
How to Relax Instantly: Elastic Relaxation of
Concurrent Data Structures

K̊are von Geijer1[0009−0007−4823−6855] and Philippas Tsigas1[0000−0001−9635−9154]

Chalmers University of Technology, Gothenburg, Sweden

Abstract. The sequential semantics of many concurrent data struc-
tures, such as stacks and queues, inevitably lead to memory contention
in parallel environments, thus limiting scalability. Semantic relaxation
has the potential to address this issue, increasing the parallelism at the
expense of weakened semantics. Although prior research has shown that
improved performance can be attained by relaxing concurrent data struc-
ture semantics, there is no one-size-fits-all relaxation that adequately
addresses the varying needs of dynamic executions.
In this paper, we first introduce the concept of elastic relaxation and
consequently present the Lateral structure, which is an algorithmic com-
ponent capable of supporting the design of elastically relaxed concurrent
data structures. Using the Lateral , we design novel elastically relaxed,
lock-free queues and stacks capable of reconfiguring relaxation during
run-time. We establish linearizability and define upper bounds for re-
laxation errors in our designs. Experimental evaluations show that our
elastic designs hold up against state-of-the-art statically relaxed designs,
while also swiftly managing trade-offs between relaxation and operational
latency. We also outline how to use the Lateral to design elastically re-
laxed lock-free counters and deques.

Keywords: concurrent data structures · lock-free · relaxed semantics

1 Introduction

As hardware parallelism advances with the development of multicore and mul-
tiprocessor systems, developers face the challenge of designing data structures
that efficiently utilize these resources. Numerous concurrent data structures ex-
ist [14], but theoretical results such as [6] demonstrate that many common data
structures, such as queues, have inherent scalability limitations as threads must
contend for a few access points. One of the most promising solutions to tackle
this scalability issue is to relax the sequential specification of data structures [27],
which permits designs that increase the number of memory access points, at the
expense of weakened sequential semantics.

The k out-of-order relaxation formalized in [13] is a popular model [26,10,18,30]
that allows relaxed operations to deviate from the sequential order by up to k;
for example, for the dequeue operation on a FIFO queue, any of the first k + 1
items can be returned instead of just the head. This error, the distance from

2 K. von Geijer and P. Tsigas

the head for a dequeue, is called the rank error. While other relaxations, such
as quiescent consistency [5] are incompatible with linearizability [15], k out-of-
order relaxation can easily be combined with linearizability, as it modifies the
semantics of the data structure instead of the consistency. Despite extensive work
on out-of-order relaxation [10,13,26,16,29,24,30], almost all existing methods are
static, requiring a fixed relaxation degree during the data structures’ lifetime.

In applications with dynamic workloads, such as bursts of activity with
throughput constraints, it is essential to be able to temporarily sacrifice se-
quential semantics for improved performance. This is the problem tackled in
this paper, to specify and design relaxed data structures where the relaxation
is reconfigurable during run-time, which we term elastic relaxation. Elastically
relaxed data structures enable the design of instance-optimizing systems, an area
that is evolving extremely rapidly across various communities [19]. The trade-
off between rank error and throughput is highlighted in [29] and [24], where
their shortest-path benchmarks show that increased relaxation leads to higher
throughput, but at the expense of additional required computation.

Several relaxed data structures are implemented by splitting the original con-
current data structure into disjoint sub-structures, and then using load-balancing
algorithms to direct different operations to different sub-structures. In this pa-
per, we base our elastic designs on the relaxed 2D framework presented in [26],
which has excellent scaling with both threads and relaxation, as well as prov-
able rank error bounds. The key idea of the 2D framework is to superimpose
a window (Win) over the sub-structures, as seen in green in Figure 1 for the
2D queue, where operations inside the window can linearize out of order. The
Wintail shifts upward by depth when it is full, and Winhead shifts upward when
emptied, to allow further operations. The size of the window dictates the rank
error, as a larger one allows for more reorderings.

The algorithmic design concept we propose in this paper is the Lateral struc-
ture that can extend the 2D structures to encompass elastic relaxation. This
Lateral is a strict concurrent version of the relaxed data structure, kept to the
side of the sub-structures to keep track of the elastic changes, as shown in Figure
2. We show how to incorporate the Lateral into the window mechanism that the
2D framework introduced while achieving a deterministic rank error bound. Al-
though we chose to use the 2D framework as a base for our designs, the Lateral
can also accommodate other designs, such as the distributed queues from [10],
the k-queue from [18], and the k-stack from [13].

Contributions. This work takes crucial steps toward designing reconfigurable
relaxed concurrent data structures with deterministic error bounds, capable of
adjusting relaxation levels during run-time.

– Firstly, we introduce the concept of elastic relaxation, allowing the rank error
to change over time. Furthermore, we introduce the Lateral component for
efficiently enhancing relaxed data structures with elasticity.

– We design and implement elastically relaxed queues and a stack using the Lat-
eral , also establishing their correctness and rank error bounds. Additionally,
we outline how to incorporate the Lateral into counters and deques.

Elastic Relaxation of Concurrent Data Structures 3

Depth = 1

Width = 3

Winmax

Winmin

Depth = 1

Winmax

Winmin

tail

tail

head

head

Fig. 1: The 2D queue has two
windows defining the operable
area for the enqueue and de-
queue operations.

Width: 2

Width: 4

Lateral
queue

Depth = 1

Winmax

Winmin

Depth = 1

Winmax

Winmin

tail

tail

head

head

Fig. 2: By adding a Lateral to the 2D queue,
changes in width at Wintail can be tracked
and adjusted to by Winhead.

– We present an extensive evaluation of our proposed data structures, bench-
marking against both non-relaxed and relaxed data structures. These eval-
uations show that the elastic designs significantly outscale non-relaxed data
structures. and perform as well as the statically relaxed ones, while also sup-
porting elastic relaxation.

– Finally, we showcase the elastic capabilities of our design by implementing a
minimalistic controller for a producer-consumer application. By dynamically
adjusting the relaxation, it is able to control the producer latency during
bursts of activity with minimal overhead.

Structure. Section 2 introduces related work, as well as gives a short descrip-
tion of the structures we base our elastic designs on. Section 3 introduces elastic
relaxation and our novel data structures, which we then prove correct and pro-
vide worst-case bounds for in Section 4. Section 5 experimentally evaluates the
new algorithms, both comparing them to earlier non-elastic data structures as
well as testing their elastic capabilities. Section 6 contains a few closing remarks.

2 Related Work

One of the earliest uses of relaxed data structures is from 1993 by Karp and
Zhang in [17]. However, they did not focus on the relaxation, and it was not until
more recently that relaxed data structures emerged as a promising technique
to boost concurrency [27]. They have demonstrated exceptional throughput on
highly parallel benchmarks [26,29,9,10], have proven suitable in heuristics for
graph algorithms [22,24], and been theoretically analyzed in e.g. [13,1,11,2].

Henzinger et al. specified quantitative relaxation in [13] to define relaxed data
structures with a rank error bound. The paper also introduces the relaxed k-
segment stack, which in turn builds upon the earlier relaxed FIFO queue from

4 K. von Geijer and P. Tsigas

[18]. Their theoretical framework is easy to extend to encompass elastic relax-
ation by allowing the rank error bound to vary over time, and it is simple to
elastically extend their designs using our Lateral .

Instead of bounding the rank error, designs such as the MultiQueue [29,25]
instead only give probibalistic guarantees. This MultiQueue is a relaxed pri-
ority queue, which, for example, has proven useful on shortest-path graph al-
gorithms [24]. It enqueues items into random sub-queues, while dequeuing the
highest priority item from a random selection of two sub-queues. This can be
applied similarly to FIFO queues [10] and stacks. The probabilistic rank error
guarantees of the MultiQueue were extensively analyzed in [2].

The SprayList from [3] is another probibalistically relaxed priority queue.
Although experimentally outperformed by the MultiQueue in [29,25,24], the
SprayList is the only relaxed data structure we found in the literature that
can reconfigure its relaxation during run-time.

The relaxed queues introduced in [16] employ relaxation to reach significantly
lower wait-times (especially in nearly empty queues) than the strict LCRQ [21]
on which they are based. While offering a new perspective on concurrent queue
design goals, these queues lack mechanisms to configure their relaxation.

2D Framework The 2D framework for k out-of-order relaxed data structures
from [26] (hereby called the static 2D designs) outscales other implementations
from the literature such as [18,13,10] with threads, while unifying designs across
stacks, queues, deques, and counters. Furthermore, its throughput scales mono-
tonically with k. It achieves this, as shown in Figure 1, by superimposing a win-
dow (Win) over multiple disjoint concurrent (nonrelaxed) sub-structures which
defines which of them are valid to operate on.

The 2D window has a width (always the number of sub-structures in the
static designs) and a depth, which together govern the relaxation profile. At any
point, it is valid to insert an item on a row r where r ≤ Winmax, or delete an
item on row r where r > Winmin ≡ Winmax − depth, while keeping linearization
order in the sub-structures. To maximize data locality, each thread tries to do
as many operations as possible on the same sub-structure in a row, only moving
due to contention or from reaching Winmax or Winmin.

If an operation cannot find a valid sub-structure, it will try to shift the
window. For example, if a thread tries to insert an item into the 2D queue and
sees all sub-queues at Wintail

max, it will try to shift the window up by atomically
incrementing Wintail

max (and implicitly Wintail
min) by depth, after which it restarts

the search for a valid sub-queue.
The 2D stack is similar to the 2D queue, but as both insert (push) and

delete (pop) operate on the same side of the data structure, only one window
is used. This leads to Winmax no longer increasing monotonically, but instead
decreasing under delete heavy workloads, and increasing under insert heavy ones.
Furthermore, Winmax shifts by depth/2 instead of depth, which roughly makes it
fair for future push and pop operations. The framework also covers deques and
counters, using the same idea of a window to define valid operations.

Elastic Relaxation of Concurrent Data Structures 5

3 Design of Elastic Algorithms

Static k out-of-order relaxation is formalized in [13] by defining and bounding a
transition cost (rank error) of the “get” methods within the linearized concurrent
history. Elastic relaxation allows the relaxation configuration to change over
time, which will naturally change the bound k as well. Therefore, we define
elastic out-of-order data structures as static out-of-order, but allow the rank
error bound to be a function of the relaxation configuration history during the
lifetime of the accessed item. In the simplest case, such as the elastic queue from
Section 3.1, the rank error bound for every dequeued item is a function of the
width and depth during which the item is dequeued.

To elastically extend the 2D algorithms, we want the width and depth of
the 2D windows to be adjustable during run-time, which would enable fine-
grained control of the relaxation. Our designs let these parameters change every
window shift, and then update them atomically with Winmax. Changing depth
is practically simple by including it as a window variable Windepth (although it
affects the error bound). Varying the width efficiently requires more attention.
During initialization, we create a fixed number of sub-structures, and then utilize
the Lateral to track the width of populated rows, as illustrated in Figure 2.

Definition 1. A Lateral to a relaxed data structure is a set of nonoverlapping
adjacent ranges of rows, where each range has a corresponding width bound.

Furthermore, we call the Lateral consistent if the width bound of each node
properly bounds the width of the corresponding rows in the main structure. The
exact implementation of the Lateral will vary depending on what performance
properties are desired, but the overarching challenge is to keep it consistent while
also being fast to read and update, as well as promising good rank error bounds.
For our 2D designs, we found that it is essential to at most update the Lateral
once every window.

3.1 Elastic Lateral-as-Window 2D Queue

This first elastic Lateral-as-Window queue (LaW queue) merges the window into
the Lateral , and its ideas can be applied to most data strucutures from the 2D
framework [26] with small changes. The pseudocode is shown in Algorithm 1.
First, we add a Lateral queue that is implemented as a Michael-Scott queue [20],
for which the code omits the standard failable Enqueue and Dequeue methods.
The Lateral nodes are windows, where each window contains Winmax, Windepth,

and Winwidth. The Wintail and Winhead then become the head and tail nodes in
the Lateral . Every shift of Wintail enqueues a new window in the Lateral (line
1.11), and every shift of Winhead dequeues a window (line 1.19).

As shown in ShiftTail (line 1.11),Windepth andWinwidth can be updated from
shared variables every shift, which enables the elasticity. The main drawback of
this design is that the relaxation can only change at Wintail, and must propagate
through the queue to reach Winhead.

6 K. von Geijer and P. Tsigas

Algorithm 1: Pseudocode for the Lateral in the elastic LaW queue

1.1 struct Window
1.2 Window* next;
1.3 uint max;
1.4 uint depth;
1.5 uint width;

1.6 global struct Lateral
1.7 Window* head;
1.8 Window* tail;

// Try to atomically enqueue new directly
after expected

1.9 method Lateral.Enqueue(expected, new);

// Try to atomically dequeue expected if it
is the head

1.10 method Lateral.Dequeue(expected);
1.11 method Lateral.ShiftTail(old window)
1.12 depth ← depthshared;
1.13 new window ← {
1.14 width: widthshared,
1.15 depth: depth,
1.16 max: old window.max + depth
1.17 };
1.18 Lateral.Enqueue(old window, new window);

1.19 function ShiftHead(current head)
1.20 Lateral.Dequeue(current head);

Other than the pseudocode in Algorithm 1, the remaining logic from the
static 2D queue require only small adjustments. Mainly, items must always
be inserted within the window, so each item gets enqueued at max(Wintailmax −
Wintaildepth, last item.row)+1, which create the needed gaps in sub-queues as seen

in Figure 2. Furthermore, Winhead cannot pass Wintail, and dequeues can simply
return empty if the Lateral is empty.

3.2 Elastic Lateral-plus-Window 2D Queue

The elastic Lateral-plus-Window 2D queue (elastic LpW queue) solves two short-
comings of the previous elastic LaW queue. Firstly, it allows the head to change
relaxation independently of the tail by letting both windows change Windepth

at window shifts. Second, it does not have to allocate a new Lateral node every
Wintail shift, and instead only creates Lateral nodes when Wintail

width changes.
However, it comes at the expense of having to decouple the window and Lateral
components, and uses a 128-bit shared atomic struct for each window.

The pseudocode for the Lateral and windows is presented in Algorithm 2
and shows that the Winhead and Wintail structs now are global variables, both
containingmax, depth, and width. The Lateral is again implemented as a Michael-
Scott queue [20] where we omit the Enqueue and Dequeue implementations.

Shifting Wintail occurs once a thread observes all sub-structures at or above
Wintail

max (line 2.27). It reads the desired depth and width from shared variables,
which are used in the next window. However, the width is not used immediately,
but instead written to a next width field, which is then used in the successive
shift as the new width (line 2.31). This delay is introduced to ensure that a
Lateral node will be enqueued with the new width before this width is used in an
enqueue. Enqueueing such a Lateral node is done before the window shift when
next width ̸= width (line 2.28), ensuring that the head of the queue will be aware
of changes in width before they occur.

Similarly, Winhead is shifted during a dequeue call when all sub-queues in the
width has reached the window max. The shift starts by dequeueing all Lateral
nodes below the current Winhead

max (loop at line 2.38), as they represent stale

Elastic Relaxation of Concurrent Data Structures 7

Algorithm 2: Lateral and window code for the elastic LpW queue

2.1 global struct TailWindow
2.2 uint64 max;
2.3 uint16 depth;
2.4 uint16 width;
2.5 uint16 next width;

2.6 global struct HeadWindow
2.7 uint64 max;
2.8 uint16 depth;
2.9 uint16 width;

2.10 struct LateralNode
2.11 LateralNode* next;
2.12 uint row;
2.13 uint width;

2.14 global struct Lateral
2.15 LateralNode* head;
2.16 LateralNode* tail;

// Try to atomically enqueue new directly
after expected

2.17 method Lateral.Enqueue(expected, new);
// Try to atomically dequeue expected if it

is the head
2.18 method Lateral.Dequeue(expected);
2.19 method Lateral.SyncTail(window)
2.20 tail ← Lateral.tail;
2.21 if tail.row ≤ window.max then
2.22 new tail ← {
2.23 row: window.max + 1,
2.24 width: window.next width
2.25 };
2.26 Lateral.Enqueue(tail, new tail);

2.27 function ShiftTail(old window)
2.28 if window.width ̸= window.next width

Lateral.SyncTail(old window) ;
2.29 depth ← depthshared;
2.30 new window ← {
2.31 width: old window.next width,
2.32 next width: widthshared,
2.33 depth: depth,
2.34 max: old window.max + depth
2.35 };
2.36 CAS(&TailWindow, old window,

new window);

2.37 function ShiftHead(old window)
2.38 while true do
2.39 head ← Lateral.head();
2.40 if head.max > old window.max break;
2.41 Lateral.Dequeue(head);

2.42 new window ← {
2.43 width: old window.width,
2.44 max: min(TailWindow.max,
2.45 old window.max + depthshared)
2.46 };
2.47 if head.row = old window.max + 1 then
2.48 new window.width ← head.width;
2.49 head ← head.next;

2.50 if head.row < new window.max then
2.51 new window.max ← head.row - 1;

2.52 new window.depth ← new window.max -
old window.max;

2.53 CAS(&HeadWindow, old window,
new window);

changes in width. The shift tries to incrementWinhead
max by a shared depth variable

(line 2.45), but sometimes has to shift it less as to not overtake Wintail
max (line

2.44) or the next Lateral node (line 2.50). If the Lateral head is on the bottom
row of the new window (line 2.48), then the new window will adapt to the width
change encoded by the head. Otherwise, the new Winhead

max is limited to not
overlap a Lateral node (line 2.50). This ensures that all nodes within a window
were pushed within the same width, which is used at dequeues to calculate which
row the dequeued node was at.

At the cost of separating the Lateral and the window, this LpW queue is able
to change depth independently for the head and the tail. However, the width is
still only ever changed at Wintail which Winhead has to adapt to by using the
Lateral . We have designed this to be efficient on modern x86-64 machines where
CAS only has hardware support for up to 128 bits, which then becomes the
upper size limits for our window structs. One can allocate the sizes differently
depending on the need of the application, but if 128 bits is not enough, or a
machine without 128-bit CAS support is used, the elastic LaW queue might be
more suitable.

8 K. von Geijer and P. Tsigas

3.3 Elastic Lateral-plus-Window 2D Stack

This elastic Lateral-plus-Window 2D stack (elastic LpW stack) uses the same
idea as the elastic LpW queue to encompass elasticity. Due to space limitations,
we here give the key ideas and refer the reader to our extended version [8] for
the complete algorithm description. The stack maintains a global shared window
struct, which is updated with CAS at window shifts, and a Treiber stack [28] as
a Lateral for all changes in width. Unlike the queue, the nonmonotonic nature
of its Winmax means that the width bound of a row can change repeatedly, and
thus the Lateral must be continuously stabilized.

The push and pop operations are very similar to the static 2D stack, except
they operate within Winpush width and Winpop width respectively, as well as that
items are always pushed to at least row Winmin. We set Winpop width to the
shared desired width , and set Winpush width to the largest width of any Lateral
node overlapping the new window.

The window shift updates the widths, reads Windepth from a shared variable,
and sets the Winmax accordingly. In addition, it stores the last push width and
the direction of the shift (UP or DOWN) in the window, which are used to
stabilize the Lateral . Due to the extra variables, the shift linearizes with a 16-
byte CAS. To support a computer without hardware support for such a wide
CAS, one could use tagged pointers to 16 byte dynamically allocated windows.

The core of this LpW stack is how the Lateral is kept consistent over suc-
cessive windows. This is done by maintaining the invariant that for any Lateral
node l, all rows in the 2D stack between l.row and l.next.row will have smaller
or equal width as l.width. This is enforced in two phases, which together create
a local top candidate for the Lateral stack, and linearize with a CAS to update
the top of the Lateral . Only one such update can linearize during each window.

The first phase lowers Lateral nodes above Winmin. If such a node l has
l.width ≤ Winpush width, then it is lowered to rowWinmin, as newly pushed nodes
could have invalidated its invariant. Similarly, if l.width > Winlast push width and
the last shift was downwards, l can safely be lowered to the previous Winmin.
A node l is lowered by replacing it with a thread-local clone whose row is the
lower row, and l is removed if its new row is smaller or equal to l.next.row.

In the second phase, a new Lateral node with width = Winlast push width

is pushed if Winpush width ̸= Winlast push width. Depending on if Winpush width

has increased or decreased, the new top is pushed at row Winmin or above all
populated rows in the 2D stack respectively. These phases result in a thread-local
top Lateral node, which the thread atomically tries to swap with the previous
Lateral top.

3.4 Elastic Extension Outlines: 2D Counter and Deque

The 2D counter can easily be made elastic by adding a Lateral counter. The
key is to let the Lateral track the difference between the the sum of all counters
within Winwidth and the total count. A simple way to implement this is to add
a small delay before changing Winwidth, as in the LpW queue, and iterate over

Elastic Relaxation of Concurrent Data Structures 9

the counters between the next and current Winwidth, updating them and the
Lateral to get a consistent offset.

To derive an elsatic 2D deque, we use a similar deque as [26], but with only
one window at each side of the deque, much like the 2D queue. However, as with
the 2D stack, these windows can shift both up and down. This can be made
elastic in a similar fashion to the LaW queue, where a Lateral deque is kept
with the sequence of all windows. If the windows shift with depth rows each
time, as in the queue, a similar approach to the k-stack from [13] can be used
to make sure a window is not removed while non-empty. If the window should
shift by depth/2 as the stack, successive windows would overlap, requiring extra
care. A solution to this could be to split each window in two, letting the threads
operate on the two topmost windows, and still use the confirmation technique
from [13] for the top Win when shifting downwards.

4 Correctness

Here we present the correctness and rank error bound guarantees of our elastic
designs. Due to space constraints, we have moved the proofs to the extended ver-
sion [8]. For simplicity, we only relax non-empty remove operations and assume a
double-collect [23] approach is used to get linearizable empty returns, as is done
in [10]. Furthermore, all our elastic designs have the same error bounds as the
static 2D structures, depth(width− 1) for the queue [26] and 2.5depth(width− 1)
for the stack [8], if no elastic changes are used.

Theorem 1. The elastic LaW queue is linearizeable with respect to a FIFO
queue with elastic k out-of-order relaxed dequeues, where k = (Winheadwidth−1)Winheaddepth.

Theorem 2. The elastic LpW queue is linearizeable with respect to a FIFO
queue with elastic k out-of-order relaxed dequeues, where for every dequeue of
item x, k = (Winenq x

width−1)(Winenq x
depth+Windeq x

depth−1). Here, Winenq x and Windeq x

signify the windows during which x was enqueued and dequeued, respectively.

Theorem 3. The elastic LpW stack is linearizeable with respect to a stack
with k out-of-order relaxed pops, where k is bounded for every item x as k =
(Winmax x

width − 1)(3Winmax x
depth − 1). Here, Winmax x

field signifies the maximum value of
Winfield during the lifetime of x on the stack.

5 Evaluation

We experimentally evaluate the scalability and elastic capabilities of our elasti-
cally relaxed LaW queue, LpW queue, and LpW stack on a 128-core 2.25GHz
AMD EPYC 9754 with two-way SMT, 256 MB L3 cache, and 755 GB RAM. The
machine runs openSUSE Tumbleweed 20240303 which uses the 7.4.1 Linux ker-
nel. All experiments are written in C and compiled with gcc 13.2.1 at its highest
optimization level, using pthreads for parallelization. Threads are pinned in a
round-robin fashion between core clusters, starting to use SMT after 128 threads.

10 K. von Geijer and P. Tsigas

Our elastic 2D implementations build on an optimized version of the static
2D framework [26]. We use SSMEM from [4] for memory management, which
includes an epoch-based garbage collector for our dynamic memory.

5.1 Static Relaxation

To understand the performance of our data structures under static relaxation,
we compare their scalability against that of state-of-the-art k out-of-order and
strict concurrent designs. For the queues, we select the static 2D queue [26] and
the k-segment queue [18] as k out-of-order designs. Furthermore, we selected the
wait-free (WF) queue from [31] as the state-of-the-art linearizable FIFO queue,
as well as the Michael-Scott (MS) queue [20] as a baseline. For the stacks, we
selected the 2D stack [26] and the k-segment stack [13] as k out-of-order designs,
the lock-free elimination-backoff stack from [12] as an efficient strict design, and
the Treiber stack [28] as a baseline. All data structures were implemented in our
framework using SSMEM [4] for memory management, with the exception of the
WF queue, for which we used the authors’ implementation with hazard pointers.

We use a benchmark in which threads repeatedly perform insert or remove
operations at random, each with equal probability, for a duration of one second.
Each data structure is pre-filled with 219 items to avoid empty returns, which
significantly alter the performance profile. Test results are aggregated over 10
runs, with standard deviation included in the plots. The test bounds the rank
error of the data structures, and as the optimal choice of Winwidth and Windepth

is not known [26], we set Winwidth = 2 × nbr threads, and use the maximum
depth to stay within the bound, which is simple and gives acceptable scalability.

Measuring rank errors without altering their distribution is an open problem,
and we adapt the method used in [26,3,25]. It encapsulates the linearization
points of all methods by a global lock, enabling us to keep a totally ordered
data structure to the side, protected by the lock. After each removal operation
returning x, the distance between x and the top item gives the rank error.

Figure 3 shows how the queues and stacks scale with both threads and re-
laxation. The results show that the elastic designs scale essentially as well as the
static 2D framework and out-scale the other data structures, meaning the Lateral
induces minimal overhead. This is because the additional work from the Lateral
is mostly confined to small checks during window shifts, while the algorithms
otherwise function similarly to the static 2D structures.

5.2 Elastic Relaxation - Dynamic adjustments

In this section, we demonstrate the elastic capabilities of our designs by imple-
menting a simple controller that dynamically adjusts theWinwidth in a producer-
consumer scenario with a varying workload. Consider a shared queue where tasks
can be added and removed in FIFO order. We let one third (42) of the 128 cores
act as consumers of this queue, constantly trying to dequeue tasks from it. The
remaining (86) cores are designated as producers, repeatedly adding tasks to the
queue, though not always active, as illustrated in the top graphs of Figure 4.

Elastic Relaxation of Concurrent Data Structures 11

1 64 128 192 256
Threads

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (s

ol
id

 li
ne

) 1e8
Queues: Thread Scalability

0

500

1000

1500

2000

2500

Re
la

xa
tio

n
(d

ot
te

d
lin

e)

2D Elastic LpW
2D Elastic LaW

2D Static
k-Segment

WF
MS

1 64 128 192 256
Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (s

ol
id

 li
ne

) 1e9
Stacks: Thread Scalability

0

1000

2000

3000

4000

Re
la

xa
tio

n
(d

ot
te

d
lin

e)

2D Elastic LpW
2D Static

k-Segment
Elimination

Treiber

102 103 104

Rank Error Bound

105

106

107

108

Th
ro

ug
hp

ut
 (s

ol
id

 li
ne

) Queues: Relaxation Scalability

102

104

106

108

Re
la

xa
tio

n
(d

ot
te

d
lin

e)

2D Elastic LpW
2D Elastic LaW

2D Static
k-Segment

WF
MS

102 103 104

Rank Error Bound

105

107

109

Th
ro

ug
hp

ut
 (s

ol
id

 li
ne

) Stacks: Relaxation Scalability

102

104

106

Re
la

xa
tio

n
(d

ot
te

d
lin

e)

2D Elastic LpW
2D Static

k-Segment
Elimination

Treiber

Fig. 3: Scalability of throughput and rank error during static relaxation. When
scaling with threads (top row), the error bound is fixed as k = 5 × 103. When
scaling with error bound, 256 threads are used.

This simulates a task queue in a highly contended server, where the consumers
are internal workers working at a constant pace, and the load of the producers
vary depending on external factors. Our goal is to control the relaxation to cope
with the dynamic nature of this producer workload.

To cope with this dynamic nature, our relaxation controller strives to keep the
operational latency approximately constant for all producers. To minimize over-
head, this controller is thread-local and only tracks failed and successful producer
CAS linearizations. Its pseudocode is included in the extended paper [8], but is
built around incrementing or decrementing a contention count by SUCC INC or
FAIL DEC depending on if the CAS linearization on a sub-queue succeeds or fails.
If |contention| > CONT TRESHOLD, the thread resets contention, adds a local vote
for increasing or decreasing the next Wintail

width by WIDTH DIFF, and depending
on its votes tries to change width shared. When the window shifts, the local
vote count is reset. These values can be tuned, but are in our experiments set
as SUCC INC = 1, FAIL DEC = 75, CONT TRESHOLD = 5000, WIDTH DIFF = 5.

Figure 4 shows the average thread operational latency, as well as the error
bound (Winheadwidth−1)×Winheaddepth averaged over 50 runs for our elastic LaW queue.

It also shows tail error = (Wintailwidth−1)×Wintaildepth which can be interpreted as a
rank error for enqueues, and shows that the controller adapts quickly. However,
it notes occasional delays between Wintail

width and Winhead
width, as the change has to

12 K. von Geijer and P. Tsigas

propagate through the queue. The figure shows a scenario without the dynamic
controller, one short test over 1 second, and one long test over 1 minute.

0

1000

2000

3000

4000

5000

Ra
nk

 E
rro

r LaW Queue: Variable Workload
Rank error bound
Tail error

20

40

60

80

Ac
tiv

e
pr

od
uc

er
s

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)
0.0

0.5

1.0

1.5

2.0

La
te

nc
y

1e 6
Producer latency
Consumer latency

(a) Static Relaxation

0

1000

2000

3000

4000

5000

Ra
nk

 E
rro

r LaW Queue: Variable Workload
Rank error bound
Tail error

20

40

60

80

Ac
tiv

e
pr

od
uc

er
s

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)
0.0

0.5

1.0

1.5

2.0

La
te

nc
y

1e 6
Producer latency
Consumer latency

(b) Dynamic Relaxation

Fig. 4: Producer-consumer system with a variable number of producers over time
for the elastic LaW queue, running for one second. In the right plot, a relaxation
controller is used to keep the producer’s latency stable.

The test without the controller shows how the producers’ latency clearly
scales with their contention. However, using the controller, the producers’ latency
is much more stable, only temporarily spiking with increases in contention. While
producers enjoy stable latency, consumers must accommodate the significant
variations in relaxation. Furthermore, it is evident that the controller quickly
adjusts Wintail

width, but that it at some points takes a while for this change to
propagate through the queue and reach Winhead and the rank error bound.

This experiment shows how even a simple thread-local controller for the width
is enough to get good dynamic trade-offs between relaxation and latency. Simi-
lar, but a little more sophisticated, controllers could easily be created to target
different use-cases, such as ones where we care about the performance of both
the producers and consumers. For example, using the elastic LaW queue, a con-
troller could control Winhead

depth and Wintail
depth separately in combination with the

Winwidth, which would lead to more flexible adaptation. To fully leverage such
a controller, it would be helpful to design a model for the queue performance,
so that the choices of depth and width could be made with more information.

6 Conclusion

We have presented the concept of elastic relaxation for concurrent data structures
and extended the 2D relaxed framework from [26] to encompass elasticity. The
Lateral structure is used to track the history of elastic changes and can be used to
extend other k out-of-order data structures. Our designs have established worst-
case bounds, and demonstrate as good performance during periods of constant
relaxation as state-of-the-art designs, while also being able to reconfigure their
relaxation on the fly. Our simple controller, based on thread-local contention,

Elastic Relaxation of Concurrent Data Structures 13

demonstrated that the elasticity can be utilized to effectively trade relaxation
for latency. We believe elastic relaxation is essential for relaxed data structures
to become realistically viable and see this paper as a first step in that direction.

As further work, we find constructing a model over the data structure per-
formance interesting, which could aid in designing more sophisticated relaxation
controllers. Another direction is applying the idea of elasticity to other data
structures, such as relaxed priority queues.

Acknowledgment and Artifact Availability This work was supported by the

Swedish Research Council project with Registration No.: 2021-05443. We would like to

thank Adones Rukundo for sharing the code used in the evaluation part of [26]. Our

code is available in the Zenodo repository [7].

References

1. Alistarh, D., Brown, T., Kopinsky, J., Li, J.Z., Nadiradze, G.: Distributionally Lin-
earizable Data Structures. Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures pp. 133–142 (2018). https://doi.org/10.1145/
3210377.3210411

2. Alistarh, D., Kopinsky, J., Li, J., Nadiradze, G.: The power of choice in pri-
ority scheduling. In: Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing. p. 283–292. PODC ’17, ACM (2017). https://doi.org/10.
1145/3087801.3087810

3. Alistarh, D., Kopinsky, J., Li, J., Shavit, N.: The spraylist: A scalable relaxed
priority queue. SIGPLAN Not. 50(8), 11–20 (2015). https://doi.org/10.1145/
2858788.2688523

4. David, T., Guerraoui, R., Trigonakis, V.: Asynchronized concurrency: The secret
to scaling concurrent search data structures. SIGARCH Comput. Archit. News
43(1), 631–644 (2015). https://doi.org/10.1145/2786763.2694359

5. Derrick, J., Dongol, B., Schellhorn, G., Tofan, B., Travkin, O., Wehrheim, H.:
Quiescent consistency: Defining and verifying relaxed linearizability. In: FM
2014: Formal Methods. pp. 200–214. Springer (2014). https://doi.org/10.1007/
978-3-319-06410-9_15

6. Ellen, F., Hendler, D., Shavit, N.: On the inherent sequentiality of concurrent
objects. SIAM Journal on Computing 41(3), 519–536 (2012). https://doi.org/
10.1137/08072646X

7. von Geijer, K., Tsigas, P.: Artifact of the paper: How to Relax Instantly: Elastic
Relaxation of Concurrent Data Structures (Jun 2024). https://doi.org/10.5281/
zenodo.11547063

8. von Geijer, K., Tsigas, P.: How to Relax Instantly: Elastic Relaxation of Concurrent
Data Structures (2024), https://arxiv.org/abs/2403.13644

9. Haas, A., Hütter, T., Kirsch, C.M., Lippautz, M., Preishuber, M., Sokolova, A.:
Scal: A benchmarking suite for concurrent data structures. In: Networked Systems.
pp. 1–14. Springer (2015). https://doi.org/10.1007/978-3-319-26850-7_1

10. Haas, A., Lippautz, M., Henzinger, T.A., Payer, H., Sokolova, A., Kirsch, C.M.,
Sezgin, A.: Distributed queues in shared memory: Multicore performance and scal-
ability through quantitative relaxation. In: Proceedings of the ACM International
Conference on Computing Frontiers. CF ’13, ACM (2013). https://doi.org/10.
1145/2482767.2482789

https://doi.org/10.1145/3210377.3210411
https://doi.org/10.1145/3210377.3210411
https://doi.org/10.1145/3210377.3210411
https://doi.org/10.1145/3210377.3210411
https://doi.org/10.1145/3087801.3087810
https://doi.org/10.1145/3087801.3087810
https://doi.org/10.1145/3087801.3087810
https://doi.org/10.1145/3087801.3087810
https://doi.org/10.1145/2858788.2688523
https://doi.org/10.1145/2858788.2688523
https://doi.org/10.1145/2858788.2688523
https://doi.org/10.1145/2858788.2688523
https://doi.org/10.1145/2786763.2694359
https://doi.org/10.1145/2786763.2694359
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1137/08072646X
https://doi.org/10.1137/08072646X
https://doi.org/10.1137/08072646X
https://doi.org/10.1137/08072646X
https://doi.org/10.5281/zenodo.11547063
https://doi.org/10.5281/zenodo.11547063
https://doi.org/10.5281/zenodo.11547063
https://doi.org/10.5281/zenodo.11547063
https://arxiv.org/abs/2403.13644
https://doi.org/10.1007/978-3-319-26850-7_1
https://doi.org/10.1007/978-3-319-26850-7_1
https://doi.org/10.1145/2482767.2482789
https://doi.org/10.1145/2482767.2482789
https://doi.org/10.1145/2482767.2482789
https://doi.org/10.1145/2482767.2482789

14 K. von Geijer and P. Tsigas

11. Hendler, D., Khattabi, A., Milani, A., Travers, C.: Upper and Lower Bounds for
Deterministic Approximate Objects. 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS) 00, 438–448 (2021). https://doi.org/
10.1109/icdcs51616.2021.00049

12. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. Jour-
nal of Parallel and Distributed Computing 70(1), 1–12 (2010). https://doi.org/
10.1016/j.jpdc.2009.08.011

13. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative
relaxation of concurrent data structures. SIGPLAN Not. 48(1), 317–328 (2013).
https://doi.org/10.1145/2480359.2429109

14. Herlihy, M., Shavit, N., Luchangco, V., Spear, M.: The Art of Multiprocessor
Programming. Elsevier Science (2020)

15. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems (TOPLAS)
12(3), 463–492 (1990). https://doi.org/10.1145/78969.78972

16. Kappes, G., Anastasiadis, S.V.: A family of relaxed concurrent queues for low-
latency operations and item transfers. ACM Trans. Parallel Comput. 9(4) (2022).
https://doi.org/10.1145/3565514

17. Karp, R.M., Zhang, Y.: Randomized parallel algorithms for backtrack search and
branch-and-bound computation. J. ACM 40(3), 765–789 (1993). https://doi.

org/10.1145/174130.174145

18. Kirsch, C.M., Payer, H., Röck, H., Sokolova, A.: Performance, Scalability, and
Semantics of Concurrent FIFO Queues. In: Algorithms and Architectures for
Parallel Processing, vol. 7439, pp. 273–287. Springer Berlin Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33078-0_20

19. Kraska, T.: Towards instance-optimized data systems, keynote. 2021 International
Conference on Very Large Data Bases (2021)

20. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the fifteenth annual ACM sympo-
sium on Principles of distributed computing. pp. 267–275 (1996)

21. Morrison, A., Afek, Y.: Fast concurrent queues for x86 processors. In: Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. p. 103–112. PPoPP ’13, ACM (2013). https://doi.org/10.1145/
2442516.2442527

22. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles. p. 456–471. SOSP ’13, ACM (2013). https://doi.org/10.1145/
2517349.2522739

23. Peterson, G.L., Burns, J.E.: Concurrent reading while writing II: The multi-writer
case. In: 28th Annual Symposium on Foundations of Computer Science (Sfcs 1987).
pp. 383–392. IEEE (1987). https://doi.org/10.1109/SFCS.1987.15

24. Postnikova, A., Koval, N., Nadiradze, G., Alistarh, D.: Multi-queues can be state-
of-the-art priority schedulers. In: Proceedings of the 27th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. p. 353–367. PPoPP
’22, ACM (2022). https://doi.org/10.1145/3503221.3508432

25. Rihani, H., Sanders, P., Dementiev, R.: Multiqueues: Simple relaxed concurrent
priority queues. In: Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures. p. 80–82. SPAA ’15, ACM (2015). https://doi.
org/10.1145/2755573.2755616

https://doi.org/10.1109/icdcs51616.2021.00049
https://doi.org/10.1109/icdcs51616.2021.00049
https://doi.org/10.1109/icdcs51616.2021.00049
https://doi.org/10.1109/icdcs51616.2021.00049
https://doi.org/10.1016/j.jpdc.2009.08.011
https://doi.org/10.1016/j.jpdc.2009.08.011
https://doi.org/10.1016/j.jpdc.2009.08.011
https://doi.org/10.1016/j.jpdc.2009.08.011
https://doi.org/10.1145/2480359.2429109
https://doi.org/10.1145/2480359.2429109
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3565514
https://doi.org/10.1145/3565514
https://doi.org/10.1145/174130.174145
https://doi.org/10.1145/174130.174145
https://doi.org/10.1145/174130.174145
https://doi.org/10.1145/174130.174145
https://doi.org/10.1007/978-3-642-33078-0_20
https://doi.org/10.1007/978-3-642-33078-0_20
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1109/SFCS.1987.15
https://doi.org/10.1109/SFCS.1987.15
https://doi.org/10.1145/3503221.3508432
https://doi.org/10.1145/3503221.3508432
https://doi.org/10.1145/2755573.2755616
https://doi.org/10.1145/2755573.2755616
https://doi.org/10.1145/2755573.2755616
https://doi.org/10.1145/2755573.2755616

Elastic Relaxation of Concurrent Data Structures 15

26. Rukundo, A., Atalar, A., Tsigas, P.: Monotonically Relaxing Concurrent Data-
Structure Semantics for Increasing Performance: An Efficient 2D Design Frame-
work. In: 33rd International Symposium on Distributed Computing (DISC 2019).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 146, pp. 31:1–31:15.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.
4230/LIPIcs.DISC.2019.31

27. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84
(2011). https://doi.org/10.1145/1897852.1897873

28. Treiber, R.: Systems programming: Coping with parallelism. Tech. rep., Interna-
tional Business Machines Incorporated, Thomas J. Watson Research Center (1986)

29. Williams, M., Sanders, P., Dementiev, R.: Engineering MultiQueues: Fast Relaxed
Concurrent Priority Queues. In: 29th Annual European Symposium on Algorithms
(ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 204,
pp. 81:1–81:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021). https:
//doi.org/10.4230/LIPIcs.ESA.2021.81

30. Wimmer, M., Gruber, J., Träff, J.L., Tsigas, P.: The lock-free k-lsm relaxed priority
queue. In: Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. p. 277–278. PPoPP 2015, ACM (2015). https:
//doi.org/10.1145/2688500.2688547

31. Yang, C., Mellor-Crummey, J.: A wait-free queue as fast as fetch-and-add. In:
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. PPoPP ’16, ACM (2016). https://doi.org/10.1145/
2851141.2851168

https://doi.org/10.4230/LIPIcs.DISC.2019.31
https://doi.org/10.4230/LIPIcs.DISC.2019.31
https://doi.org/10.4230/LIPIcs.DISC.2019.31
https://doi.org/10.4230/LIPIcs.DISC.2019.31
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.4230/LIPIcs.ESA.2021.81
https://doi.org/10.4230/LIPIcs.ESA.2021.81
https://doi.org/10.4230/LIPIcs.ESA.2021.81
https://doi.org/10.4230/LIPIcs.ESA.2021.81
https://doi.org/10.1145/2688500.2688547
https://doi.org/10.1145/2688500.2688547
https://doi.org/10.1145/2688500.2688547
https://doi.org/10.1145/2688500.2688547
https://doi.org/10.1145/2851141.2851168
https://doi.org/10.1145/2851141.2851168
https://doi.org/10.1145/2851141.2851168
https://doi.org/10.1145/2851141.2851168

	How to Relax Instantly: Elastic Relaxation of Concurrent Data Structures

