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Abstract
Relaxed semantics have been introduced to increase the
achievable parallelism of concurrent data structures in ex-
change for weakening their ordering semantics. In this paper,
we revisit the balanced allocations 𝑑-choice load balancing
scheme in the context of relaxed FIFO queues. Our novel
load balancing approach distributes operations evenly across
𝑛 sub-queues based on operation counts, achieving low re-
laxation errors independent on the queues size, as opposed
to similar earlier designs. We prove its relaxation errors to
be of O( 𝑛 log log𝑛

log𝑑 ) with high probability for a collection of
possible executions. Furthermore, our scheme, contrary to
previous ones, manages to interface and integrate the most
performant linearizable queue designs from the literature as
components. Our resulting relaxed FIFO queue is experimen-
tally shown to outperform the previously best design using
balanced allocations by more than four times in throughput,
while simultaneously incurring less than a thousandth of its
relaxation errors. In a concurrent breadth-first-search bench-
mark, our queue consistently outperforms both relaxed and
strict state-of-the-art FIFO queues.

CCS Concepts: • Computing methodologies→ Parallel
algorithms; Sharedmemory algorithms; •Mathematics
of computing→ Probabilistic algorithms; • Theory of
computation→ Data structures design and analysis; Pro-
gram semantics.
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1 Introduction
The available hardware parallelism has seen tremendous
growth the last two decades, which in turn has heightened
the need for efficient concurrent data structures [34]. The
design of efficient concurrent queues has proven to be a hot
area, and there are now many efficient FIFO queues [26, 42],
stacks [8, 17] and priority queues [5, 22]. However, the scal-
ability of such sequential designs is limited, as all operations
must form a total order and often contend for the same few
memory locations [9].

A popular approach to further increase scalability of such
inherently higly contented data structures has been to relax
data structure semantics [34]. The most common type of
relaxation is the out-of-order one, where a set of operations
is allowed to deviate from the sequential linearization order.
Relaxed queues often relax the ordering of their dequeue
operations and use the terms rank error and delay to quantify
the relaxation errors. Consider the dequeue of item 𝑥 at time
𝑡 in a FIFO queue. Then the rank error becomes the number
of items older than 𝑥 in the queue at 𝑡 , and the delay the
number of items enqueued after the enqueue of 𝑥 that were
dequeued before 𝑡 .
Queues are commonly relaxed by being split up into dis-

joint sub-queues [15, 32, 33]. Here, operations linearize by
operating on one of these sub-queues, and the main algorith-
mic difference between the queues is what load balancing
scheme they use. A large part of the research is focused on
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load balancing that guarantees deterministic worst-case rank
error and delay bounds [18, 20, 33], which leads to designs
that are often quite easy to work with and extend [40].On
the other hand, several other designs leverage the power of
randomization, often enabling them to achieve better trade-
offs between efficiency and observed relaxation [15, 29, 41],
at the cost of losing their deterministic worst-case relaxation
bounds.
A prevalent technique in randomized relaxation [15, 41]

has been the use of the 𝑑-choice load balancer, first analyzed
by Azar et al. [3]. Consider trying to balance the load of
𝑚 balls over a set of 𝑛 bins. If one inserts each new ball
into the least loaded bin out of a random choice of 𝑑 (where
𝑑 ≥ 2), it is proven that the heaviest bin will diverge at most
O(log log𝑛/log𝑑) from the average load with high probabil-
ity (w.h.p.) when𝑚 = 𝑛 [3] or𝑚 ≫ 𝑛 [4].This has been used
to relax queues by splitting them up into 𝑛 sub-queues and
operating on the preferred sub-queue out of the 𝑑 randomly
selected ones for each operation [20, 32].

Applying this 𝑑-choice load balancer to queues requires a
preference between sampled sub-queues. TheMultiQueue [29,
32, 41] relaxed priority queue has proven successful by choos-
ing the sub-queue with the highest priority item for deletes.
For relaxed FIFO queues, the 𝑑-RA queue [15, 20] demon-
strated efficiency by enqueuing into the shortest sampled
sub-queue and dequeueing from the longest. However, bas-
ing the 𝑑-choice on the length of the sub-queues comes at
the expense of making the rank error dependent on the total
queue size. This is demonstrated in Figure 1a, which visual-
izes the average rank error of the 2-RA with 64 sub-queues
over 100 runs in a sequential setting. It shows empirically
that the rank errors in the 𝑑-RA can degrade with increasing
queue size. The prior analysis on the 𝑑-RA only bounds the
difference in sub-queue size as a function of the number of
sub-queues, missing the connection to the rank errors, and
their experiments seem to only run on small queues where
the relaxation looks good.

Another issue with contemporary relaxed FIFO queues is
that essentially all of them [15, 20, 33] build upon suboptimal
sub-queues such as the Michael-Scott (MS) queue [24]. The
main reason for this is that the MS queue provides lineariz-
able exact enqueue and dequeue counts, a crucial element
of the respective relaxed designs. More scalable FIFO queue
designs, such as the LCRQ [26] lack this property, making
them more intricate to utilize. By using modern sub-queues
based on arrays and fetch-and-add (FAA) instead of compare-
and-swap (CAS), one can get better performance at similar
relaxation errors.

In this paper, we introduce a 𝑑-choice sub-queue load bal-
acer that gives both good throughput and low relaxation. For
enqueues (dequeues) it samples 𝑑 sub-queues at random and
operates on the one with fewest total enqueues (dequeues)
performed on it. By using results from balanced allocations
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Figure 1. FIFO rank errors when using 2-choice load bal-
ancing over length and operations respectively, using 64
sub-queues.

for heavily loaded balls-into-bins [4] we bound the rank er-
rors and delay of our load balancing scheme to O( 𝑛 log log𝑛

log𝑑 )
w.h.p. in execution with non-overlapping operations. Figure
1b demonstrates the difference in rank errors when balanc-
ing using sub-queue lengths and operation counts. It shows
that the earlier length-based scheme, as used in the 𝑑-RA
queue, has errors increasing with the size of the queue, while
our operation-based balancing maintains low rank errors
invariantly of the pre-fill and number of operations.

Furthermore, we show how to incorporate fast queue de-
signs, such as the LCRQ by Morrison and Afek [26] and
the wait-free queue by Yang and Mellor-Crummey [42], as
sub-queues for such 𝑑-choice load balanced queues. We de-
scribe the interface a sub-queue needs to implement, which
mainly entails noticing if the queue has changed between
two points in time, for ensuring empty-linearizability and
lock-freedom. We then describe how to implement this for a
set of such fast queues by using internal counters that are
incremented and used every operation. We also show how
any queue can be used as sub-queue when the requirement
for empty-linearizability is removed, as it is not standard in
relaxed queues [33, 41].

Contributions. We introduce the randomly relaxed FIFO
𝑑-Choice Balanced Operations (d-CBO) queue that builds
upon the theory of balanced allocations. The operation-
based load balancer is shown analytically to give rank er-
rors and delay of O( 𝑛 log log𝑛

log𝑑 ) w.h.p. in execution with non-
overlapping operations. Our experimental evaluation finds
that it gives orders of magnitude smaller errors in concur-
rent executions than previous designs, as well as suggest-
ing that general concurrent executions scale as when as-
sumeing non-overlapping operations. The queue further im-
proves on earlier designs by incorporating state-of-the-art
sub-queues for increased performance. The sub-queue in-
terface is generic and leaves room for future queue designs,
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and our experimental evaluation shows that the fast sub-
queues can give more than 10 times better throughput when
using a low number of sub-queues. Our breadth-first-search
(BFS) macro-benchmark demonstrates consistently and sig-
nificantly faster running times than earlier strict and relaxed
concurrent FIFO queues.

Outline. We present the novel algorithm in Section 3. Based
on this algorithm description, we analyze the expected errors
from its load balancing scheme in Section 4, where we also
prove its linearizability and lock-freedom. We describe how
to integrate our algorithmwith state-of-the-art sub-queues in
Section 5. Our experimental evaluation in Section 6 evaluates
throughput and rank errors in micro-benchmarks, as well as
the possible speedup of relaxed queues in a concurrent BFS
benchmark. Finally, the paper concludes in Section 7.

2 Related Work
The Michael-Scott (MS) queue [24] was introduced in 1996
and has since become a foundational design in lock-free data
structures due to its simplicity and extensibility, as evidenced
by its adaptation in the Harris linked list [16] and many re-
laxed queues [15, 20, 33]. However, the design faces scalabil-
ity issues due to two highly contended CAS retry loops at the
head and tail, respectively. In the following years, there were
several lock-free queue designs [12, 19, 25, 37] that improved
on the MS queue in different scenarios.

Morrison and Afek proposed the LCRQ in 2013 [26] which
since has remained among the most scalable and flexible
lock-free queue designs. In utilizes a linked list of circular
ring buffers with epoch counters inside cells for linearizabil-
ity. The key is that they use FAA on head and tail counters
in each buffer to assign operations to cells. This leads to
dequeues occasionally reaching the cell before the corre-
sponding enqueue, poisoning the cell and forcing the future
enqueue to retry. However, the performance increase from
using FAA over CAS far dwarfs these retry costs in most
cases.
There has also been work on wait-free queues, but until

recently, the fastest wait-free queue was orders of magni-
tude slower than that of lock-free queues [10]. However,
Kogan and Petrank [21] presented the fast-path-slow-path
methodology in 2012, that was later used by Yang andMellor-
Crumney in 2016 to create an efficient wait-free queue [42]
(WFQ). Similarly to the LCRQ, the WFQ is a linked list of
bounded buffers, where FAA is used to assign operations
to cells. The difference is that after a certain set of failed
attemps at linearization, a slow operation gets help from
others until it succeeds. However, in the fast path, which is
most cases, it performs very similarly to the LCRQ. A similar
design to the WFQ, but without the wait-free helping, called
the FAAArrayQueue [31] was described by Ramalhete in
2016.

Another area with a lot of interest over the years is bal-
anced allocations. In the balls-into-bins problem, we are
given𝑚 balls to insert into𝑛 bins with the goal of minimizing
the maximal bin load, which is the same as minimizing the
gap = max

𝑖=1...𝑛
{bin𝑖−𝑚

𝑛
}. The problem assumes that one cannot

always inspect all bins and is divided into the lightly loaded
case where 𝑛 =𝑚 and the heavy loaded case where𝑚 ≫ 𝑛.
In the simplest one-choice process where balls are allocated
uniformly at random, the gap w.h.p. is O( log𝑛

log log𝑛 ) [14] in
the lightly loaded case, and w.h.p. O(

√︁
𝑚
𝑛
log𝑛) [30] in the

heavily loaded case.
Simply extending the strategy to a two-choice process,

where each ball is allocated to the least loaded of two ran-
dom bins, proves a huge improvement over the one-choice
process. This was first analyzed byAzar et al. [3] who showed
that the process w.h.p. only has a gap of log2 log𝑛 + O(1)
in the lightly loaded case. Berenbrink et al. [4] extended the
analysis to 𝑑-choice processes (allocate each ball to the light-
est of 𝑑 sampled bins) where 𝑑 ≥ 2 in the heavily loaded case,
for which they found the same bound as in the light setting
log𝑑 log𝑛 + O(1). This heavily loaded bound was later also
proved by Talwar and Wieder [36], but using a simpler proof
technique that was generalizable for the case of weighted
balls.
The two-choice process has proven useful within the de-

sign of relaxed priority queues. Perhaps the most successful
design yet is the MultiQueue [32, 41] which is a relaxed
priority queue which inserts items into random partial pri-
ority queues, and removes items from the the partial with
the highest priority item out of a random choice of two. It
has proven to be effective in practice [41], for example as a
priority scheduler [29]. Its relaxation has also been analyzed
using techniques from balls-into-bins [1, 2, 29].
Furthermore, the 𝑑-choice has been applied to relaxed

FIFO queues with the 𝑑-RA queue [20], where items are
enqueued into the shortest (and dequeued from the longest)
of 𝑑 sampled queues. Although showing comparatively good
performance to other designs, the relaxation error of the
queue is not properly analyzed and it is based on the sub-
optimal MS queue [24] for sub-queues, depending on the
exact enqueue and dequeue counters this provides.

There are also relaxed FIFO queues that guarantee worst-
case bounds on the rank error. The 𝑘-segment queue [20] is
designed as a MS queue [24] where every node is an array
with space for 𝑘 items. The tail (head) is only advanced
when completely filled (emptied), which gives a maximal
rank error of 𝑘−1. Similarly, the 2D queue [33] superimposes
a window with a width and depth over its partial queues at
its head and tail, that define operable areas for the dequeues
and enqueues respectively. This leads to a rank error bound
of (width − 1) · depth. Although the 2D queue improves on
the 𝑘-segment queue, they both share the issue of threads
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searching for valid sub-queues the final operations before
the segment/window advances.
The 𝑏-round-robin queue [15] is another relaxed FIFO

queue. In it, every thread is attached to one of 𝑏 counters
for enqueues and dequeues respectively, and for every op-
eration is uses fetch-and-add on the counter, modulo the
number of partial queues, to get which queue to operate
on. Letting the relaxation of a queue become unbounded,
but requiring empty-linearizability, corresponds to concur-
rent pools. Sundell et al. [35] presented an efficient pool
for workloads where each thread both insert and removes
items, and Gidron et al. [13] presented an efficient design for
producer-consumer workloads.

The potential of relaxing the sequential semantics of con-
current data structures was first highlighted by Shavit [34]
and first formalized by the concept of quantitative relax-
ation by Henzinger et al. [18]. However, their definition only
covers designs with worst-case bounds. Alistarh et al. [1] de-
fined distributional linearizability as a correctness condition
for concurrent designs with randomized relaxation, such as
the MultiQueue [32]. The concept of elastic relaxation has
also been recently introduced by von Geijer et al. [40] as a
correctness condition for designs in which the relaxation
bounds can be changed during run-time to match dynamic
executions.

3 Algorithmic Description
The pseudocode of our 𝑑-Choice Balanced Operations (𝑑-
CBO) queue is shown in Algorithm 1. It starts by presenting
the generic functions required for the sub-queue to imple-
ment (line 1.1). As for all FIFO queues, the sub-queues must
implement Enqueue andDequeue. Furhermore, the sub-queue
must implement EnqCount and DeqCount which should re-
turn how many items have been enqueued and dequeued
from the sub-queue. Finally, EnqVersion returns an integer
that is unique for each current tail item.
For linearizability, the sub-queues must be linearizable,

and the EnqVersion must change during the linearization
of each enqueue, never returning the same count for two
different tail items. The EnqCount and DeqCount should
be exact during sequential executions, but are allowed to
deviate in concurrent executions as long as the deviation
is on the same order of magnitude for all sub-queues. To
guarantee lock-freedom, the sub-queue must be lock-free,
and EnqVersion is only allowed to change a finite number of
times before an enqueue linearizes. Most lock-free queues
can implement this interface with small additions, and we
show how to implement it for a few modern sub-queues in
Section 5.
Moving on to the 𝑑-CBO methods, its Enqueue (line 1.7)

samples 𝑑 sub-queues at random (with replacement), selects
the optimal sampled sub-queue as the one with lowest En-
qCount, and linearizes by enqueueing into it. As outlined

Algorithm 1: 𝑑-Choice Balanced Operations Queue
1.1 generic SubQueue
1.2 method SubQueue.Enqueue(item)
1.3 method SubQueue.Dequeue()→ Item | NULL
1.4 method SubQueue.EnqCount()→ uint
1.5 method SubQueue.DeqCount()→ uint
1.6 method SubQueue.EnqVersion()→ uint
1.7 function Enqueue(sub_queues, d, item)
1.8 samples← randomly sample (𝑞1, . . . , 𝑞𝑑 ) where

𝑞𝑖 ∈ sub_queues
1.9 optimal← argmin

𝑞∈samples
EnqCount(q)

1.10 optimal.Enqueue(item)

1.11 function Dequeue(sub_queues, d)
1.12 samples← randomly sample (𝑞1, . . . , 𝑞𝑑 ) where

𝑞𝑖 ∈ sub_queues
1.13 optimal← argmin

𝑞∈samples
DeqCount(q)

1.14 dequeued ← optimal.Dequeue()
1.15 if dequeued ≠ NULL then
1.16 return dequeued
1.17 else
1.18 return DoubleCollect(sub_queues)

1.19 function DoubleCollect(sub_queues)
1.20 versions← [0, . . . , 0]
1.21 repeat
1.22 for 𝑞𝑖 ∈ sub_queues do
1.23 versions[i]← EnqVersion(𝑞𝑖 )
1.24 dequeued ← 𝑞𝑖 .Dequeue()
1.25 if dequeued ≠ NULL then
1.26 return dequeued

1.27 if ∀𝑞𝑖 ∈ sub_queues, EnqVersion(𝑞𝑖 ) =
versions[𝑖] then

1.28 return NULL

above, this will also change the EnqVersion and increment
the EnqCount of the sub-queue.

The 𝑑-CBO Dequeue (line 1.11) similarly tries to dequeue
from the sub-queue with the lowest DeqCount out of the 𝑑
sampled ones. However, if the sub-queue Dequeue returns
NULL, the 𝑑-CBO Dequeue cannot immediately return NULL.
Instead it must enter the DoubleCollect function to guarantee
empty-linearizability.
The DoubleCollect function (line 1.18) uses the double-

collect [28] mechanism to try to get an atomic snapshot
where all sub-queues are empty. It does this by first iterating
over the sub-queues (line 1.22), recording their EnqVersion
and trying to dequeue an item from them. To avoid sub-
queue bias, this iteration should start at a random index. If it
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at any point succeeds in dequeuing an item, it successfully
returns it. However, if it found all sub-queues empty in the
first iteration, it then does a second iteration (line 1.27) where
it checks if any EnqVersion has changed, signalling that an
item might have been enqueued, in which case it restarts. If
no EnqVersion has changed, no item can have been enqueued
between the end of the first iteration and the start of the
second, at which point all sub-queues were empty and it is
safe to return NULL.

4 Analysis
4.1 Probabilistic Relaxation Guarantees
This section analyzes the relaxation errors in the 𝑑-CBO
queue. We consider the set of exections where enqueues
and dequeues are non-overlapping or equivalently occur
atomically, a common approach used in the related litera-
ture [2, 20, 41], and analyze the load balancing scheme in
this setting.
On a high level, our analysis starts by formalizing the

sub-queue selection as an enqueue and dequeue multivariate
process over the EnqCount and DeqCount, similarly to the
balls-into-bins process. The rank error and delay are then
formulated in terms of those two processes. Without empty
sub-queues, the enqueue and dequeue processes would be
equivalent to the Greedy 𝑑-choice [3], and we could re-use
its theory [4]. This is however not the case, but Lemma 4.4
and Lemma 4.5 use the short memory of the 𝑑-choice process
to show that this difference does not affect the rank error
bound, as the deviation only takes place when the queue
is small. These two lemmas naturally prove Theorem 4.6
and Theorem 4.7, which bound the rank error and delay to
O( 𝑛 log log𝑛

log𝑑 ) w.h.p.
Let E𝑖 (𝑡) denote the EnqCount of sub-queue 𝑖 at time 𝑡 .

The enqueue operation, as described on line 1.7, inserts its
item into the sub-queue with the smallest EnqCount among
the 𝑑 sampled queues, in the process incrementing that Enq-
Count by 1. In terms of E, an enqueue samples 𝑑 E𝑖 (𝑡) and
increments the smallest of them.
Similarly, let D𝑖 (𝑡) denote the DeqCount of sub-queue 𝑖

at time 𝑡 . A dequeue operation as described on line 1.11 tries
to dequeue an item from the sub-queue with the smallest
DeqCount out of the 𝑘 samples sub-queues, incrementing
its DeqCount. However, if the sampled sub-queueue with
smallest DeqCount is empty, the DoubleCollect mechanism
at line 1.18 is used to dequeue an item from another queue
or return NULL if the whole queue is empty. This can be
seen as sampling 𝑑 counts in D𝑖 (𝑡) and incrementing the
smallest such D𝑗 (𝑡) if D𝑗 (𝑡) < E 𝑗 (𝑡). But if D𝑗 (𝑡) ≥ E 𝑗 (𝑡),
the next (in round-robin order) D𝑖 (𝑡) where D𝑖 (𝑡) < E𝑖 (𝑡)
is incremented. If no such D𝑖 (𝑡) exists, the dequeue has no
effect and returns NULL.
Definition 4.1. The gap of a 𝑛-dimensional vector X, such
as E or D, is defined as the difference between its largest

value and its mean.
gap(X) = max(X) − X

Definition 4.2. The rank error of the dequeue of item 𝑥 ,
which was enqueued at time 𝑡𝑒 and dequeued at 𝑡𝑑 , is the
number of other items that were enqueued before 𝑡𝑒 and are
still in the queue at time 𝑡𝑑 . In terms of D and E, this can be
expressed as

rank error =
𝑛∑︁
𝑖=1

max(0, E𝑖 (𝑡𝑒 ) − D𝑖 (𝑡𝑑 ))

≤
𝑛∑︁
𝑖=1
|E𝑖 (𝑡𝑒 ) − D𝑖 (𝑡𝑑 ) |.

(1)

Definition 4.3. The delay of item 𝑥 , which was enqueued
at time 𝑡𝑒 and dequeued at time 𝑡𝑑 (where 𝑡𝑑 = ∞ if 𝑥 is never
dequeued), is defined as the number of items enqueued after
𝑡𝑒 but dequeued before 𝑡𝑑 . This is formulized in terms of E
and D as

delay =

𝑛∑︁
𝑖=1

max(0,D𝑖 (𝑡𝑑 ) − E𝑖 (𝑡𝑒 ))

≤
𝑛∑︁
𝑖=1
|E𝑖 (𝑡𝑒 ) − D𝑖 (𝑡𝑑 ) |.

(2)

Equations 1 and 2 show the duality of the rank error and
delay, where they simply swap the sign inside the max at
each sub-queue. Bounding this sum

∑𝑛
𝑖=1 |E𝑖 (𝑡𝑒 ) − D𝑖 (𝑡𝑑 ) |

now becomes the key to bounding both the rank error and
delay, and is bounded in the following two lemmas.

Lemma4.4. At any time 𝑡 , it holds that gap(E(𝑡)) = O( log log𝑛log𝑑 )
and gap(D(𝑡)) = O( log log𝑛log𝑑 ).

Proof. As the updates of E matches the 𝑑-choice balanced
allocation (Greedy[𝑑]) process for balls-into-bins, the anal-
ysis of Berenbrink et al. [4] gives, ∀𝑐 > 0, ∃𝛾 (𝑐) such that
Pr[gap(E(𝑡)) ≥ log log𝑛

log𝑑 + 𝛾] ≤ 𝑛−𝑐 , for any 𝑡 . Therefore, the
lemma holds for E.
As earlier outlined, the use of double-collect in dequeues

makesD deviate from the classical 𝑑-choice process. Instead
of incrementing the lowest sampled D𝑖 (𝑡) when D𝑖 (𝑡) =
E𝑖 (𝑡), it instead increments another D𝑗 (𝑡) where D𝑗 (𝑡) <
E 𝑗 (𝑡). However, as D𝑖 (𝑡) = E𝑖 (𝑡), we have E(𝑡) − D(𝑡) =
O( log log𝑛log𝑑 ) w.h.p. Furthermore, as the double-collect enforces
that the incremented count D𝑗 (𝑡) < E 𝑗 (𝑡), and E(𝑡) −
D(𝑡) = O( log log𝑛log𝑑 ), a series of such double-collect incre-
ments can only increase gap(D(𝑡)) by gap(E(𝑡)) = O( log log𝑛log𝑑 ).
So, assume gap(D) = O( log log𝑛log𝑑 ) at time 𝑡 . Then at time

𝑡 + 𝑇 the effects of the double-collect will not have an ef-
fect on the order of the gap, and the short-term memory of
the Greedy[𝑑] process, as proven by Berenbrink et al. [4],
guarantee that the successful 𝑑-choice dequeues maintain
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gap(D(𝑡)) = O( log log𝑛log𝑑 ) even if the distributions of the
counts in D(𝑡) take on a different pattern than the normal
𝑑-choice process. □

Lemma 4.5. For any item enqueued at time 𝑡𝑒 and dequeued
at time 𝑡𝑑 , it holds that

∑𝑛
𝑖=1 |E𝑖 (𝑡𝑒 ) − D𝑖 (𝑡𝑑 ) | = O( 𝑛 log log𝑛

log𝑑 ).

Proof. Assume the item was dequeued from queue 𝑖 . Then
D𝑖 (𝑡𝑑 ) = E𝑖 (𝑡𝑒 ) due to the total order in the sub-queue.
Thus, Lemma 4.4 implies that |E(𝑡𝑒 ) − D(𝑡𝑑 ) | = O( log log𝑛log𝑑 )
w.h.p., which when summed over all sub-queues w.h.p. gives∑𝑛

𝑖=1 |E𝑖 (𝑡𝑒 ) − D𝑖 (𝑡𝑑 ) | = O( 𝑛 log log𝑛
log𝑑 ). □

With Lemmas 4.4 and 4.5 we now have all we need to
create simple proofs bounding the rank error and the delay
of the 𝑑-CBO queue.

Theorem 4.6. A 𝑑-CBO queue w.h.p. has rank errors of
O( 𝑛 log log𝑛

log𝑑 ), in executions with non-overlapping operations.

Proof. The rank error of a dequeue is in equation 1 bounded
by

∑𝑛
𝑖=1 |E𝑖 (𝑡𝑒 ) −D𝑖 (𝑡𝑑 ) |, where 𝑡𝑒 and 𝑡𝑑 are the timestamps

when the item was enqueued and dequeued respectively.
That sum in turn is in turn found to beO( 𝑛 log log𝑛

log𝑑 ) in Lemma
4.5. □

Theorem 4.7. Items in a 𝑑-CBO queue w.h.p. have delays of
O( 𝑛 log log𝑛

log𝑑 ), in executions with non-overlapping operations.

Proof. The delay of an item is in equation 2 bounded by∑𝑛
𝑖=1 |E𝑖 (𝑡𝑒 ) − D𝑖 (𝑡𝑑 ) |, where 𝑡𝑒 is the time the item was

enqueued and 𝑡𝑑 the time it was dequeued (or ∞ if never
dequeued). Lemma 4.5 in turn finds that sum to be of order
O( 𝑛 log log𝑛

log𝑑 ). □

4.2 Correctness Guarantees
In this part we prove the linearizability and lock-freedom
of the 𝑑-CBO queue. The analysis utilizes the sub-queue
interface, which guarantees that they should be linearizable,
lock-free, that EnqVersion must be uniquely changed for
every tail, and that at least one enqueue must linearize after
the EnqVersion has changed a certain finite number of times.

Theorem 4.8. The 𝑑-CBO queue is linearizable with respect
to the semantics of a concurrent pool.

Proof. An enqueue operation always linearizes with a lin-
earizable enqueue to a sub-queue at line 1.10. Similarly, a
non-empty dequeue also linearizes on a sub-queue at either
line 1.16 or line 1.26.

Finally, dequeues returningNULL linearizewith the double-
collect [28] mechanism by repeating two itertions over the
sub-queues in the DoubleCollect function (line 1.18). The first
(line 1.22) collects EnqVersion counts for every sub-queue, af-
ter which it ensures that the queue is empty (as it otherwise
returns an dequeued item at line 1.26). The DoubleCollect call

only returns NULL if the sub-queues have unchanged En-
qVersion counts during the second iteration (line 1.27). As the
version counts are guaranteed to be incremented during the
linearization of an enqueue, this means that no enqueue has
linearized between the end of the first iteration and the start
of the second. Finally, as all queues were found empty in the
first iteration, the operation can linearize by returning NULL
with the linearization point between the two iterations. □

Theorem 4.9. A 𝑑-CBO queue is lock-free.

Proof. Assume a period of time, with pending operations,
where no enqueue linearizes for the 𝑑-CBO. We will prove
that this period must be finite in length, as an enqueue or
dequeue otherwise must complete. Inspecting enqueuers, we
note that each 𝑑-CBO enqueue call (line 1.7) only performs
𝑑 calls to EnqCount and one sub-queue Enqueue call before
returning.
A 𝑑-CBO dequeue can invoke more sub-queue calls, but

before it enters the DoubleCollect call it will similarly have
performed 𝑑 calls to DeqCount and one Dequeue at a sub-
queue. After it enters DoubleCollect (line 1.18), it repeatedly
(line 1.21) performs two loops containing up to𝑛 Dequeue and
2𝑛 EnqVersion calls. However, the DoubleCollect function will
return NULL on line 1.28 in one of these iterations if no sub-
queue EnqVersion has changed. The correctness condition
on EnqVersion guarantees that it can only change a finite
number of times before an enqueue linearizes.
Therefore, in this setting without enqueue progress, each

𝑑-CBO operation can only invoke a finite number of instruc-
tions and sub-queue calls before returning. As the sub-queues
are lock-free, this duration without enqueue progress must
either be finite in time or include dequeue linearizations,
implying that the 𝑑-CBO queue is lock-free.

□

5 Implementations
5.1 Integrating Fast Sub-Queues
Section 3 outlined the interface sub-queues must implement,
and this section describes how to uphold those guarantees for
four selected lock-free queues. We start with the simple MS
queue [24] which is commonly used in earlier relaxed FIFO
designs [15, 20, 33], and then move on to state-of-the-art
lock-free queues designed around FAA.
An optimization used for all sub-queues is for their de-

queues to linearize by returning NULL if EnqCount ≤ Deq-
Count. This reduces the number of increments of DeqCount
and EnqCount which do not result in linearizations, improv-
ing the accuracy of the counters for the 𝑑-choice.

MS queue. Naturally, the MS queue [24] supports lock-free
linearizable enqueue and dequeuemethods. Furthermore, the
by using counted head and tail pointers1, as in the original
1This is a necessary slight overhead, as the counted pointers are not required
inside the MS queue when using memory management such as hazard
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design [24], we can implement exact EnqCount and Deq-
Count functions. Finally, as those counts are incremented
during the linearization of operations, we can let EnqVersion
= EnqCount. Note also that the EnqCount is only updated
during the linearization of an enqueue.

FAAArrayQueue. The FAAArrayQueue [31] is an efficient,
yet very simple, lock-free queue designed around FAA. It uses
a linked list of queue segments where each segment has en-
queue and dequeue counts used to assign operations to cells
within the segment. By instrumenting each segment with a
segment_number, increasing by one for each new segment,
we can approximate the EnqCount as tail.segment_number
* SEGMENT_SIZE + min(tail.enq_count, SEGMENT_SIZE),
where tail is the newest queue segment. Similarly, the De-
qCount can be approximated by head.segment_number *
SEGMENT_SIZE + min(head.deq_count, SEGMENT_SIZE),
where head is the oldest nonempty queue segment.

By limiting enq_count and deq_count from exceeding
SEGMENT_SIZE, we ensure that each EnqCount corresponds
to a unique tail item. Therefore, we can use EnqCount as En-
qVersion. Furthermore, the queue is operation-wise lock-free
as an enqueuewill succeed system-wide every SEGMENT_SIZE
attempts when enqueueing a new segment. Therefore it ful-
fills the requirement of one enqueue linearizing for some
finite number of changes to EnqVersion. The EnqCount and
DeqCount are not exact, as cells can be poisoned when the
queue is close to empty, but the balanced operations spread
these errors indiscriminately across the sub-queues.

WFQ. The wait-free queue (WFQ) [42] is similar to the
FAAArrayQueue, with the addition that threads can help
each other achieve wait-freedom. The WFQ has one cen-
tral enqueue count and dequeue count for assigning oper-
ations to cells across segments. These can be used direcly
as EnqCount and DeqCount, with very similar behavior as
the FAAArrayQueue. By letting EnqVersion = EnqCount, the
same argument as for the FAAArrayQueue guarantees a
unique tail for every EnqVersion. The wait-freedom, together
with the fact that the EnqCount is only incremented by en-
queues, ensures that for some finite number of changes to
EnqVersion, at least one enqueue must have linearized.

LCRQ. The LCRQ [26] is similar to the FAAArrayQueue,
with the non-trivial optimization that segments are cyclic.
This cyclic nature can improve performance in some cases,
but also makes it more difficult to integrate it in 𝑑-CBO.
Firstly, as the maximum size of each segment is unknown
– as opposed to the FAAArrayQueue – we instrument each
segment with a starting_count, which initialized to the
enq_count of the previous segment. The EnqCount is then es-
timated as tail.starting_count + tail.enq_count, and
DeqCount as head.starting_count + head.deq_count,

pointers [23] or epoch-based reclamation [11]. Such counts are not added
for the other sub-queues, as one then can use internal pre-existing counters.

where tail and head are the newest and oldest non-empty
segments respectively.

A problemwith the starting_count is that the enq_count
of the previous segment can be incremented after the ini-
tialization of the new starting_count. This is a potential
source of error when choosing the optimal sub-queue and
also leads to the same EnqCount being reported for different
tail items. Therefore, EnqCount cannot be used directly as
EnqVersion and we instead let EnqVersion be the bitwise con-
catenation of tail.enq_count and tail.starting_count.

To fulfill the requirement that EnqVersion can only change
a finite number of times before an enqueue linearizes, the
optional fixStatemechanismmust be disabled. This is an opti-
mization enabling dequeue operations to increase enq_count,
which can cause dead-locks in the double-collect of an empty
𝑑-CBO. It is clear that each EnqVersion corresponds to a
unique tail item, only being changed during the lineariza-
tion of an enqueue. As the base LCRQ is lock-free, it now
implements the sub-queue interface.

Memory Overhead. The memory usage of the 𝑑-CBO de-
pends on the sub-queues used. Array-based queues such
as the LCRQ, WFQ, and FAAArrayQueue incur a memory
overhead due to the arrays not always being filled. This is
compounded when using them as sub-queues, as the over-
head is multiplied by the number of sub-queues used. In the
worst case, each sub-queue has empty head and tail array seg-
ments, translating to NBR_SUBQUEUES * 2 * SEGMENT_SIZE
empty cells, which bounds the 𝑑-CBO’s memory overhead
(disregarding potential overhead in used cell), as there is no
replication of items. In memory-constrained environments,
one should consider using smaller array segments, when
using several sub-queues, compared to the array segments
used in the original strict queues.

5.2 Relaxing Empty-Linearizability
As shown above, especially for the LCRQ, integrating new
sub-queues for the 𝑑-CBO requires some care and under-
standing of the sub-queue properties. Even then, the Enq-
Count and DeqCount are not guaranteed to be accurate. Here
we introduce the Simplified d-Choice Balanced Operations
queue (Simple 𝑑-CBO), which relaxes the empty-linearity
guarantee of the 𝑑-CBO in favor of a simplified design that
can be used for any sub-queue, inheriting its properties.

Replacing the double-collect with a single-collect, where a
dequeue returns NULL iff it has dequeued NULL from all sub-
queues, removes the need for EnqVersion by sacrificing the
empty-linearizability. For problems such as graph-traversals,
where threads iteratively both dequeue and enqueue from
the queue and can suspend after dequeueingNULL, the queue
must be empty when all threads have dequeued NULL and
suspended. This leads to the same termination conditions as
if the queue was empty-linearizable.
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Once the EnqVersion is made redundant, the 𝑑-CBO can
be made completely generic over its sub-queue by also re-
moving the need for sub-queue EnqCount and DeqCount
implementations. Instead, one can create a wrapper for each
sub-queue, with additional EnqCount and DeqCount fields
that are updated with FAA after enqueues and non-empty
dequeues. This sacrifices a bit of performance due to added
contention at these counters, but will cause the counters to
be more exact.
The relaxation analysis in Section 4.1 trivially still holds

for this Simple 𝑑-CBO, and the only relaxation difference
is that we allow relaxed empty returns. Relaxed empty re-
turns are also part of the quantitative relaxation [18] and
distributed linearizability specifications of out-of-order re-
laxations, when such empty returns are within the error
bound. Furthermore, the Simple 𝑑-CBO inherits lock-free
and linearizable properties directly from its sub-queue.

6 Experimental Results
We have implemented the 𝑑-CBO [38], using the sub-queues
presented in the last section, in a C benchmark suite for
relaxed data structures built on top of the ASCYLIB suite [6].
To evaluate our implementations, we first present a vari-
ety of synthetic benchmarks to evaluate the scalability of
throughput and rank errors. Secondly, we have implemented
a concurrent BFS algorithms that accommodates relaxed
queues, which we use to compare the 𝑑-CBO against state-
of-the-art relaxed and strict queues in a more realistic setting.
All experiments use 𝑑 = 2, as that has been shown to be a
good choice in the literature [3, 15, 29, 32, 41], and was also
verified in our experiments.

When comparing against state-of-the-art, we have se-
lected the FAAArrayQueue2 [31],WFQ3 [42], and LCRQ3 [26]
as representatives of strict FIFO queues. For relaxed queues,
we have selected the 2D queue4 [33, 40], and the𝑑-RA queue2 [15,
20], as these are the best bounded and randomized designs
we know of in the literature. The 2D queue always uses
depth=16 in our benchmarks, as it showed good trade-offs
between performance and relaxation errors. All these imple-
mentations have been incorporated into our benchmarking
suite [38], using SSMEM [6] for consistent and fast epoch-
based memory management.

SystemDescription. All experiments run on anAMDEPYC
9754 running at 2.25GHzwith 128 cores using two-way SMT,
256MB L3 cache, and 755 GB RAM. The machine runs Open-
SUSE Tumbleweed with the Linux 6.9.9 kernel. All experi-
ments are written in C, using pthreads for concurrency and
compiling with gcc 13.3.0 at optimization level O3. Software
threads are pinned to hardware threads in a round-robin

2Implemented ourselves.
3Code from https://github.com/chaoran/fast-wait-free-queue [42].
4Code from the relaxed 2D benchmarking suite [39].

fashion between core clusters, starting to use SMT after 128
threads.

6.1 Benchmarking Scalability
To evaluate the performance of the 𝑑-CBO, we here evaluate
its throughput and average rank error. Each data point shows
the average and standard deviation of ten runs, each running
for half a second. We mainly show results of using 128 sub-
queues, as that empirically gave good results in the BFS
benchmark, but also show sub-queue scalability in Figure 4.
Furthermore, most benchmarks pre-fill the queues with 106
items to avoid empty returns for dequeues, which can cause
deceivingly low relaxation errors or high throughput. Each
experiment is run in two settings:

• Random Enqueue/Dequeue: Here, each thread re-
peatedly flips a fair coin and enqueues or dequeues an
item based on the outcome.
• Producer-Consumer: Here half the threads are pro-
ducers, repeatedly enqueueing items, and the other
half consumers, repeatedly dequeueing items.

We measure rank errors with similar methodology as pre-
vious works [15, 41] by timestamping each operation and
afterwards using the timestamps to re-create a sequential
history. The rank errors can then be determined from the
sequential history. This timestamping incurs some overhead,
and relaxation is therefore measured in separate executions
from the throughput measurements.

Efficient Sub-Queue Designs. We begin by evaluating the
performance benefits of our design’s ability to integrate the
most effective queue designs. Figure 2 compares the scala-
bility of our new 𝑑-CBO designs, including the simplified
implementations. Unsurprisingly, the MS queue has the low-
est throughput scalability, while the other sub-queues scale
relatively similarly. The simplified versions are a bit slower
than their standard versions, due to the extra work of up-
dating the external counters. The simplified designs also
demonstrate worse average rank error, especially at higher
levels of concurrency. This is due to the external counters be-
ing updated after the sub-queue operations linearize, leading
to slightly stale information for the 𝑑-choice sub-queue se-
lection. The queues show very similar scalability in both the
Random Enqueue/Dequeue and Producer-Consumer settings.

Load Balancing Schemes. To evaluate our new load bal-
ancing scheme, we have implemented the𝑑-Choice Balanced-
Lenghts (𝑑-CBL) queue, which uses the previous 𝑑-RA load
balancer [20] to select sub-queues based on their length. As
shown in Figure 3,𝑑-RA often leads to slightly lower through-
put, as sampling must read both the enqueue and dequeue
counts for each sub-queue. However, the standout differen-
tiator is rank errors where the operation-based balancing is
an order of magnitude better.

https://github.com/chaoran/fast-wait-free-queue


Balanced Allocations over Efficient Queues PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

0

2

4

Th
ro

ug
hp

ut
 (o

ps
/s

) 1e8
Random Enqueue/Dequeue

1 64 128 192 256
Threads

100

120

140

160

M
ea

n 
Ra

nk
 E

rro
r

0

2

4

Th
ro

ug
hp

ut
 (o

ps
/s

)

1e8 Producer-Consumer

1 64 128 192 256
Threads

100

120

140

160

M
ea

n 
Ra

nk
 E

rro
r

MS d-CBO
FAAArrayQueue d-CBO

WFQ d-CBO
LCRQ d-CBO

MS Simple d-CBO
FAAArrayQueue Simple d-CBO

WFQ Simple d-CBO
LCRQ Simple d-CBO

Figure 2. Evaluating the different 𝑑-CBO designs, using 128
sub-queues and 106 pre-fill.
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Figure 3. Comparing our operation-based load balancing
with the earlier length-based balancing scheme, using 128
sub-queues and 106 pre-fill.

Scalability with Sub-Queues. Figure 4 shows how the
𝑑-CBO scales with increasing number of sub-queues. The
MS queue is significantly slower – though its more accurate
counters result in slightly better rank errors – at lowerwidths
where sub-queue contention is higher. Our analysis bounds
the rank error to O(𝑛 log log𝑛) w.h.p. in executions with
non-overlapping operations. The figure includes a line of 𝑘 ∗
𝑛 log log𝑛+𝑚, where𝑚 and 𝑘 are constants, which correlates
very well with the measured rank errors. This suggests that
the scalability in general concurrent executions also scale as
O(𝑛 log log𝑛).

State-of-the-art. Experiments comparing the 𝑑-CBO with
state-of-the-art designs [20, 26, 31, 33, 42] are shown in Fig-
ure 5, presenting results for both large and small pre-fill. For
clarity, we only included the FAAArrayQueue 𝑑-CBO as it
performed the best in the in previous comparisons. Both the
simplified and standard 𝑑-CBO significantly outscale earlier
designs in throughput while also maintaining a far lower
rank error average than the 2D and 𝑑-RA designs. The 𝑑-RA
manages to achieve relatively low rank errors in the presence
of low pre-fill, but its heuristic is bad for large queues as also
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Figure 4. Evaluating how the 𝑑-CBO scales with the number
of sub-queues, using 256 threads and 106 pre-fill. Includes line
of O(𝑛 log log𝑛) for comparing with rank error scalability.

seen in Figure 3 and Figure 1. The reason for the high errors
in larger queues is that the enqueue/dequeue counts for two
sub-queues can drift relative to each other over time, as long
as the difference between the counts for all queues stays the
same.
Generally, the experiments with low pre-fill are more

volatile, as NULL dequeue returns can significantly alter
the performance. The number of 𝑑-CBO operations entering
the double-collect in the benchmarks varied by sub-queue
due to differences in dequeue and enqueue latencies. The
MS queue was the only one with faster dequeues than en-
queues, thus entering double-collect in around 20% of de-
queues for the producer-consumer scenario. For the random
enqueue/dequeue setting, we saw between four and ten per-
cent of dequeues entering the double-collect with low pre-fill,
and none at high pre-fill. In general, relaxed queues similar
to the 𝑑-CBO are not as effective when the number of empty
dequeues are significantly higher than this and you want
low-latency empty dequeues, due to the double-collects. If
one wants faster empty dequeues, the double-collect can
be removed, or changed to a single-collect, at the cost of
empty-linearizability.

6.2 Concurrent BFS Benchmark
To evaluate the usability of the 𝑑-CBO, we utilize a concur-
rent BFS benchmark. In the BFS, as shown in Algorithm 2,
threads iteratively, through a series of so-called relaxations
(line 2.12), decrease the known fastest path to vertices. The
algorithm continues until the queue is empty and all threads
are idle, where the fastest path to each vertex is found, as-
suming unweighted edges.

We define the work of an execution as the number of times
the tentative distance to a node is changed (line 2.12). In the
sequential setting, the work will equal the number of nodes
(assuming the graph is strongly connected), as one always
processes the wavefronts in order. However, interleavings
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Figure 5. Comparison against state-of-the-art, using 128
sub-queues for all relaxed queues, and depth = 16 for the
2D queue.

Algorithm 2: Concurrent BFS Algorithm
2.1 graph← ReadToCSR()
2.2 distances← [∞, . . . ,∞]
2.3 queue← [source]
2.4 distances[source] ← 0
2.5 concurrently while One thread has work do
2.6 at← queue.Dequeue()
2.7 if at ≠ NULL then
2.8 at_dist← distances[at]
2.9 for neigh ∈ neighbors(at, graph) do
2.10 neigh_dist← distances[neigh]
2.11 while neigh_dist < at_dist + 1 do
2.12 if CAS(distances[neigh], neigh_dist,

at_dist + 1) then
2.13 queue.Enqueue(neigh)
2.14 break

Graph Nodes Edges Avg. Source Dist.

europe_osm 51𝑀 108𝑀 5028
road_usa 24𝑀 58𝑀 2762
road_central 14𝑀 34𝑀 1901
asia_osm 11𝑀 25𝑀 11619
hugebubbles-00000 18𝑀 55𝑀 3322
delaunay_n24 17𝑀 101𝑀 926
tx2010 914𝑇 4.4𝑀 123
coPapersDBLP 540𝑇 30𝑀 5.82

Table 1. Graphs used in BFS benchmark. All available in the
SuiteSparse Matrix Collection [7].

and relaxation errors in concurrent executions can cause
sub-optimal paths to be explored, leading to additional work.
For evaluation, we selected real-world graphs following

previous research [27, 29] as shown in Table 1. We selected a
set of road networks, one graph from numerical simulation,
one from Delaunay triangulation, one from census data, and
one research citation graph. They are all strongly connected
and we arbitrarily select node 1 as the source. Table 1 also
includes the average distance from the source, which is re-
lated to the diameter and heavily affects the BFS execution
characteristic.
The results from running the BFS algorithm with our 𝑑-

CBO and the selected state-of-the-art queues, is shown in
Figure 6. Each data point shows the speedup and work in-
crease compared to the sequential algorithm with a strict
queue, averaged over 10 runs, including standard deviation.
The results vary significantly for different graphs, but

the 𝑑-CBO consistently achives the highest speedup for all
the graphs at high thread counts, with the FAAArrayQueue
𝑑-CBO often slightly outperforming the other FAA-based
designs, as also shown in the synthetic benchmarks. The
𝑑-CBO often has to process more work than the sequential
designs, but compensates with its superior throughput. The
2D queue consistently has among the highest work increases,
especially at low thread counts, but manages to scale rather
well and for the most part outperforms the strict queues. The
𝑑-RA performs similar to the MS 𝑑-CBO, as the queue likely
often is relatively small, leading to lesser rank errors as also
shown in Figure 5.

Interestingly, the strict queues can have rather high work
increases as well, purely due to concurrency interleavings.
Especially in the citation graph, with its low diameter, several
of the strict queues do more work than the relaxed queues.
This shows that the drawback of relaxed semantics, namely
the relaxed order, in some cases does not pose a significant
difference to normal concurrent designs. This is especially
noticeable for relaxed queues such as the 𝑑-CBO with rela-
tively small relaxation errors.
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Figure 6. Comparing queues with a concurrent label-correcting BFS algorithm, using 128 sub-queues for all relaxed queues,
and depth=32 for the 2D queue.

7 Conclusion
We introduced the relaxed 𝑑-CBO queue, that significantly
improves on state-of-the-art designs in throughput and relax-
ation errors simultaneously. This is achieved by providing
a new algorithmic design that i) is capable of interfacing
against efficient sub-queues and ii) introduces a new load
balancing scheme for balancing operations to sub-queues
based on operation counts. Besides the experimental results
that depict its performance improvements, we prove that the
relaxation error is of O( 𝑛 log log𝑛

log𝑑 ) in executions with non-
overlapping operations. This bound also correlates well with
our experiments in all general concurrent executions. Finally,
our concurrent BFS benchmark demonstrated the utility of
relaxed queues, where 𝑑-CBO again consistently performed
the best.

As future work, we would like to extend the relaxation er-
ror bounds to encompass all concurrent executions. Another
interesting direction is to extend the algorithmic design to
be able to elastically change its relaxation during runtime.

Acknowledgments
This work was supported by the Swedish Research Council
under Grant No. 2021-05443.

References
[1] Dan Alistarh, Trevor Brown, Justin Kopinsky, Jerry Z. Li, and Giorgi

Nadiradze. 2018. Distributionally Linearizable Data Structures. In
Proceedings of the 30th on Symposium on Parallelism in Algorithms and
Architectures (Vienna, Austria) (SPAA ’18, Vol. test). Association for
Computing Machinery, New York, NY, USA, 133–142. https://doi.org/
10.1145/3210377.3210411

[2] Dan Alistarh, Justin Kopinsky, Jerry Li, and Giorgi Nadiradze. 2017.
The Power of Choice in Priority Scheduling. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (Washington, DC,
USA) (PODC ’17). Association for Computing Machinery, New York,
NY, USA, 283–292. https://doi.org/10.1145/3087801.3087810

[3] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. 1999. Bal-
anced Alocations. SIAM J. Comput. 29, 1 (1999), 180–200. A preliminary
version appeared in Proceedings of the 26th Annual ACM Symposium
on Theory of Computing, pages 593–602, Montreal, Quebec, Canada,
May 23–25, 1994. ACM Press, New York, NY..

[4] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold
Vöcking. 2006. Balanced Allocations: The Heavily Loaded Case.
SIAM J. Comput. 35, 6 (2006), 1350–1385. https://doi.org/10.1137/
S009753970444435X

[5] Anastasia Braginsky, Nachshon Cohen, and Erez Petrank. 2016. CBPQ:
High Performance Lock-Free Priority Queue. In Euro-Par 2016: Parallel
Processing, Pierre-François Dutot and Denis Trystram (Eds.). Springer
International Publishing, Cham, 460–474.

[6] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asyn-
chronized Concurrency: The Secret to Scaling Concurrent Search Data
Structures. SIGARCH Comput. Archit. News 43, 1 (2015), 631–644.
https://doi.org/10.1145/2786763.2694359

https://doi.org/10.1145/3210377.3210411
https://doi.org/10.1145/3210377.3210411
https://doi.org/10.1145/3087801.3087810
https://doi.org/10.1137/S009753970444435X
https://doi.org/10.1137/S009753970444435X
https://doi.org/10.1145/2786763.2694359


PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Kåre von Geijer, Philippas Tsigas, Elias Johansson, and Sebastian Hermansson

[7] Timothy A. Davis and Yifan Hu. 2011. The university of Florida sparse
matrix collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011),
25 pages. https://doi.org/10.1145/2049662.2049663

[8] Mike Dodds, Andreas Haas, and Christoph M. Kirsch. 2015. A Scalable,
Correct Time-Stamped Stack. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Mumbai, India) (POPL ’15). Association for Computing Machinery,
New York, NY, USA, 233–246. https://doi.org/10.1145/2676726.2676963

[9] Faith Ellen, Danny Hendler, and Nir Shavit. 2012. On the Inherent
Sequentiality of Concurrent Objects. SIAM J. Comput. 41, 3 (2012),
519–536. https://doi.org/10.1137/08072646X

[10] Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A highly-
efficient wait-free universal construction. In Proceedings of the Twenty-
Third Annual ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (San Jose, California, USA) (SPAA ’11). Association for
Computing Machinery, New York, NY, USA, 325–334. https://doi.org/
10.1145/1989493.1989549

[11] Keir Fraser. 2003. Practical lock-freedom. Ph. D. Dissertation. University
of Cambridge.

[12] Anders Gidenstam, Håkan Sundell, and Philippas Tsigas. 2010. Cache-
Aware Lock-Free Queues for Multiple Producers/Consumers andWeak
Memory Consistency. In Principles of Distributed Systems. Springer
Berlin Heidelberg, Berlin, Heidelberg, 302–317. https://doi.org/10.
1007/978-3-642-17653-1_23

[13] Elad Gidron, Idit Keidar, Dmitri Perelman, and Yonathan Perez. 2012.
SALSA: scalable and low synchronization NUMA-aware algorithm for
producer-consumer pools. In Proceedings of the Twenty-Fourth Annual
ACM Symposium on Parallelism in Algorithms and Architectures (Pitts-
burgh, Pennsylvania, USA) (SPAA ’12). Association for Computing
Machinery, New York, NY, USA, 151–160. https://doi.org/10.1145/
2312005.2312035

[14] Gaston H. Gonnet. 1981. Expected Length of the Longest Probe Se-
quence in Hash Code Searching. J. ACM 28, 2 (apr 1981), 289–304.
https://doi.org/10.1145/322248.322254

[15] Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer,
Ana Sokolova, Christoph M. Kirsch, and Ali Sezgin. 2013. Distributed
queues in shared memory: multicore performance and scalability
through quantitative relaxation. In Proceedings of the ACM Interna-
tional Conference on Computing Frontiers (Ischia, Italy) (CF ’13). As-
sociation for Computing Machinery, New York, NY, USA, Article 17,
9 pages. https://doi.org/10.1145/2482767.2482789

[16] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking
Linked-Lists. In Proceedings of the 15th International Conference on
Distributed Computing (DISC ’01). Springer-Verlag, Berlin, Heidelberg,
300–314.

[17] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2010. A Scalable
Lock-Free Stack Algorithm. J. Parallel and Distrib. Comput. 70, 1 (2010),
1–12. https://doi.org/10.1016/j.jpdc.2009.08.011

[18] Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin,
and Ana Sokolova. 2013. Quantitative Relaxation of Concurrent Data
Structures. SIGPLAN Not. 48, 1 (2013), 317–328. https://doi.org/10.
1145/2480359.2429109

[19] Moshe Hoffman, Ori Shalev, and Nir Shavit. 2007. The Baskets Queue.
In Principles of Distributed Systems. Springer Berlin Heidelberg, Berlin,
Heidelberg, 401–414. https://doi.org/10.1007/978-3-540-77096-1_29

[20] Christoph M. Kirsch, Hannes Payer, Harald Röck, and Ana Sokolova.
2012. Performance, scalability, and semantics of concurrent FIFO
queues. In Proceedings of the 12th International Conference on Al-
gorithms and Architectures for Parallel Processing - Volume Part I
(Fukuoka, Japan) (ICA3PP’12). Springer-Verlag, Berlin, Heidelberg,
273–287. https://doi.org/10.1007/978-3-642-33078-0_20

[21] Alex Kogan and Erez Petrank. 2012. A methodology for creating fast
wait-free data structures. In Proceedings of the 17th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (NewOrleans,

Louisiana, USA) (PPoPP ’12). Association for Computing Machinery,
New York, NY, USA, 141–150. https://doi.org/10.1145/2145816.2145835

[22] Jonatan Lindén and Bengt Jonsson. 2013. A Skiplist-Based Concurrent
Priority Queue with Minimal Memory Contention. In Principles of
Distributed Systems. Springer International Publishing, Cham, 206–
220.

[23] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation
for Lock-Free Objects. IEEE Trans. Parallel Distrib. Syst. 15, 6 (jun 2004),
491–504. https://doi.org/10.1109/TPDS.2004.8

[24] Maged M. Michael and Michael L. Scott. 1996. Simple, fast, and practi-
cal non-blocking and blocking concurrent queue algorithms. In Pro-
ceedings of the Fifteenth Annual ACM Symposium on Principles of Dis-
tributed Computing (Philadelphia, Pennsylvania, USA) (PODC ’96).
Association for Computing Machinery, New York, NY, USA, 267–275.
https://doi.org/10.1145/248052.248106

[25] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. 2005. Us-
ing elimination to implement scalable and lock-free FIFO queues. In
Proceedings of the Seventeenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures (Las Vegas, Nevada, USA) (SPAA ’05).
Association for Computing Machinery, New York, NY, USA, 253–262.
https://doi.org/10.1145/1073970.1074013

[26] Adam Morrison and Yehuda Afek. 2013. Fast concurrent queues for
x86 processors. In Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (Shenzhen, China)
(PPoPP ’13). Association for Computing Machinery, New York, NY,
USA, 103–112. https://doi.org/10.1145/2442516.2442527

[27] Maxim Naumov, Alysson Vrielink, and Michael Garland. 2017. Par-
allel Depth-First Search for Directed Acyclic Graphs. In Proceed-
ings of the Seventh Workshop on Irregular Applications: Architectures
and Algorithms (Denver, CO, USA) (IA3’17). Association for Com-
puting Machinery, New York, NY, USA, Article 4, 8 pages. https:
//doi.org/10.1145/3149704.3149764

[28] Gary L. Peterson and James E. Burns. 1987. Concurrent reading while
writing II: The multi-writer case. In Proceedings of the 28th Annual Sym-
posium on Foundations of Computer Science (SFCS ’87). IEEE Computer
Society, USA, 383–392. https://doi.org/10.1109/SFCS.1987.15

[29] Anastasiia Postnikova, Nikita Koval, Giorgi Nadiradze, and Dan Alis-
tarh. 2022. Multi-queues can be state-of-the-art priority schedulers.
In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Seoul, Republic of Korea) (PPoPP ’22).
Association for Computing Machinery, New York, NY, USA, 353–367.
https://doi.org/10.1145/3503221.3508432

[30] Martin Raab and Angelika Steger. 1998. “Balls into Bins” — a Simple
and Tight Analysis. In Randomization and Approximation Techniques
in Computer Science, Michael Luby, José D. P. Rolim, and Maria Serna
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 159–170.

[31] Pedro Ramalhete. 2016. FAAArrayQueue - MPMC Lock-Free Queue.
http://concurrencyfreaks.blogspot.com/2016/11/faaarrayqueue-
mpmc-lock-free-queue-part.html Accessed: 2024-07-29.

[32] Hamza Rihani, Peter Sanders, and Roman Dementiev. 2015. Multi-
Queues: Simple Relaxed Concurrent Priority Queues. In Proceedings of
the 27th ACM Symposium on Parallelism in Algorithms and Architectures
(Portland, Oregon, USA) (SPAA ’15). Association for Computing Ma-
chinery, New York, NY, USA, 80–82. https://doi.org/10.1145/2755573.
2755616

[33] Adones Rukundo, Aras Atalar, and Philippas Tsigas. 2019. Monoton-
ically Relaxing Concurrent Data-Structure Semantics for Increasing
Performance: An Efficient 2D Design Framework. In 33rd International
Symposium on Distributed Computing (DISC 2019) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Vol. 146), Jukka Suomela (Ed.).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Ger-
many, 31:1–31:15. https://doi.org/10.4230/LIPIcs.DISC.2019.31

[34] Nir Shavit. 2011. Data Structures in the Multicore Age. Commun. ACM
54, 3 (2011), 76–84. https://doi.org/10.1145/1897852.1897873

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.1137/08072646X
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1007/978-3-642-17653-1_23
https://doi.org/10.1007/978-3-642-17653-1_23
https://doi.org/10.1145/2312005.2312035
https://doi.org/10.1145/2312005.2312035
https://doi.org/10.1145/322248.322254
https://doi.org/10.1145/2482767.2482789
https://doi.org/10.1016/j.jpdc.2009.08.011
https://doi.org/10.1145/2480359.2429109
https://doi.org/10.1145/2480359.2429109
https://doi.org/10.1007/978-3-540-77096-1_29
https://doi.org/10.1007/978-3-642-33078-0_20
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/1073970.1074013
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/3149704.3149764
https://doi.org/10.1145/3149704.3149764
https://doi.org/10.1109/SFCS.1987.15
https://doi.org/10.1145/3503221.3508432
http://concurrencyfreaks.blogspot.com/2016/11/faaarrayqueue-mpmc-lock-free-queue-part.html
http://concurrencyfreaks.blogspot.com/2016/11/faaarrayqueue-mpmc-lock-free-queue-part.html
https://doi.org/10.1145/2755573.2755616
https://doi.org/10.1145/2755573.2755616
https://doi.org/10.4230/LIPIcs.DISC.2019.31
https://doi.org/10.1145/1897852.1897873


Balanced Allocations over Efficient Queues PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

[35] Håkan Sundell, Anders Gidenstam,Marina Papatriantafilou, and Philip-
pas Tsigas. 2011. A lock-free algorithm for concurrent bags. In Pro-
ceedings of the Twenty-Third Annual ACM Symposium on Parallelism
in Algorithms and Architectures (San Jose, California, USA) (SPAA ’11).
Association for Computing Machinery, New York, NY, USA, 335–344.
https://doi.org/10.1145/1989493.1989550

[36] Kunal Talwar and Udi Wieder. 2014. Balanced Allocations: A Simple
Proof for the Heavily Loaded Case. In Automata, Languages, and Pro-
gramming. Springer Berlin Heidelberg, Berlin, Heidelberg, 979–990.

[37] Philippas Tsigas and Yi Zhang. 2001. A simple, fast and scalable non-
blocking concurrent FIFO queue for shared memory multiprocessor
systems. In Proceedings of the Thirteenth Annual ACM Symposium on
Parallel Algorithms and Architectures (Crete Island, Greece) (SPAA ’01).
Association for Computing Machinery, New York, NY, USA, 134–143.
https://doi.org/10.1145/378580.378611

[38] Kåre von Geijer. 2025. Artifact for: Balanced Allocations over Efficient
Queues: A Fast Relaxed FIFO Queue. https://doi.org/10.5281/zenodo.
14223312

[39] Kåre von Geijer and Philippas Tsigas. 2024. Artifact of the paper: How
to Relax Instantly: Elastic Relaxation of Concurrent Data Structures.
https://doi.org/10.5281/zenodo.11547063

[40] Kåre von Geijer and Philippas Tsigas. 2024. How to Relax Instantly:
Elastic Relaxation of Concurrent Data Structures. In Euro-Par 2024:
Parallel Processing. Springer Nature Switzerland, Cham, 119–133.
https://doi.org/10.1007/978-3-031-69583-4_9

[41] Marvin Williams, Peter Sanders, and Roman Dementiev. 2021. Engi-
neering MultiQueues: Fast Relaxed Concurrent Priority Queues. In
29th Annual European Symposium on Algorithms (ESA 2021) (Leib-
niz International Proceedings in Informatics (LIPIcs), Vol. 204), Petra
Mutzel, Rasmus Pagh, and Grzegorz Herman (Eds.). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 81:1–81:17.
https://doi.org/10.4230/LIPIcs.ESA.2021.81

[42] Chaoran Yang and John Mellor-Crummey. 2016. A wait-free queue as
fast as fetch-and-add. In Proceedings of the 21st ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (Barcelona,
Spain) (PPoPP ’16). Association for Computing Machinery, New York,
NY, USA, Article 16, 13 pages. https://doi.org/10.1145/2851141.2851168

A Artifact Overview
This section gives an overview of the complementary arti-
fact to this paper, which is available as a separate Zenodo
archive [38]. Here we give a brief overview of the artifact,
how to set it up, and rerun the experiments from the paper,
and we refer to the full description in the artifact for further
details.

The artifact consists of two repositories:

• relaxed-queue-simulations contains Rust code for
simulating the rank errors in sequential executions of
choice-of-two queues, encompassing the 𝑑-CBO and
𝑑-RA [20]. This is used to recreate Figure 1.
• relaxed-benchmarking-suite contains a library of
concurrent data structures in C. This suite contains all
the benchmarks needed to recreate the experiments
from Section 6. These implementations require an x86-
64 machine.

Both repositories use Docker5 to set up their environments.
Refer to https://docs.docker.com/engine/install/ for setup in-
structions. For brevity, we will here only include instructions
for pulling the pre-built images from DockerHub.

A.1 Relaxed Queue Simulations
To rerun the experiment from Figure 1, you can simply pull
the following image, containing the repository and an envi-
ronment, and run it.
$ docker pull khorium/relaxed-queue-simulations:ppopp
$ docker run --rm -v $(pwd)/results:/app/results \

khorium/relaxed-queue-simulations:ppopp

This will generate two PDFs in results/ containing the
two heatmaps. To save time, the image is set up to only run
one run for every ocnfiguration, instead of averaging over
100 as in Figure 1. The trends should still be clearly visible,
but one can also start the container interactively with the
-it flag, modify the script recreate-ppopp.sh to do 100
runs, and then run it.

A.2 Relaxed Benchmarking Suite
This repository is built around the x86-64 architecture and
Linux. It will likely run on other systems, but could give
incorrect or misleading results. First, pull the image with the
following command.
$ docker pull khorium/relaxed-benchmarking-suite:ppopp

The repository contains scripts/recreate-ppopp.sh,
which can be run to rerun all benchmarks from Section 6.
This in turn runs several Python scripts, which compile and
run the C benchmarks. The shell script contains values for
controlling the evaluation, which you likely want to adapt
based on your hardware (the ones used in the paper are
included as comments in the script):
• nbr_threads sets the maximum number of threads.
Adjust this based on your number of available hard-
ware threads.
• duration is the number of milliseconds to run the
throughput benchmmarks for.
• relaxation_duration is the number of milliseconds
to run the relaxation benchmarks for. It can take quite
a long time after the execution to compute the errors,
and it is therefore suggested to set this a bit lower for
the experiments to not take too long.
• runs is the number of runs to average over for each
configuration.
• step is the number (plus one) of different thread con-
figurations to run.

The benchmarks pin software threads to hardware threads
to achieve stable and representative results. However, this
has to be configured individually for each machine, as the
hardware thread numbering varies between systems. The
pinning strategy used depends on the hostname, which is
5They were developed using Docker version 26.1.5-ce, build 411e817ddf71.
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why we set the hostname to example-pinning when run-
ning the container below, which is a configuration that allo-
cates hardware threads in sequential order. This is not always
desired, and we then refer to the full artifact description [38].
So, to recreate the evaluation from the paper, start the

container interactively, configure the execution, and run it
as follows.
$ docker run -it --rm --hostname=example-pinning \

-v $(pwd)/results:/app/results \
khorium/relaxed-benchmarking-suite:ppopp bash

# Edit pinning, and scripts/recreate-ppopp.sh
$ bash scripts/recreate-ppopp.sh

This creates a subfolder in ./results/ for each experi-
ment, including the PDF of the plot, as well as the collected
data. The experiments are expected to take about an hour

with the given settings. To simplify comparing the generated
figures to the ones in the paper, we here present a mapping
from the paper figures to the names of the generated folders
in results/.
• Figure 2: simple-enq-deq (left) and simple-prod-con
(right).
• Figure 3: dcbl-enq-deq (left) and dcbl-prod-con (right).
• Figure 4: subqueue-scalability-enq-deq (left) and subqueue-
scalability-prod-con (right).
• Figure 5a: sota-enq-deq-large (left) and sota-prod-con-
large (right).
• Figure 5b: sota-enq-deq-small (left) and sota-prod-con-
small (right).
• Figure 6: Eight folders named bfs-<graph_name>.
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